Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Lorenz system
System of ordinary differential equations first studied by Edward Lorenz

The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions. In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system. The term "butterfly effect" in popular media may stem from the real-world implications of the Lorenz attractor, namely that tiny changes in initial conditions evolve to completely different trajectories. This underscores that chaotic systems can be completely deterministic and yet still be inherently impractical or even impossible to predict over longer periods of time. For example, even the small flap of a butterfly's wings could set the earth's atmosphere on a vastly different trajectory, in which for example a hurricane occurs where it otherwise would have not (see Saddle points). The shape of the Lorenz attractor itself, when plotted in phase space, may also be seen to resemble a butterfly.

Related Image Collections Add Image
We don't have any YouTube videos related to Lorenz system yet.
We don't have any PDF documents related to Lorenz system yet.
We don't have any Books related to Lorenz system yet.
We don't have any archived web articles related to Lorenz system yet.

Overview

See also: Chaos theory § Lorenz's pioneering contributions to chaotic modeling

In 1963, Edward Lorenz, with the help of Ellen Fetter, who was responsible for the numerical simulations and figures,1 and Margaret Hamilton, who helped in the initial, numerical computations leading up to the findings of the Lorenz model,2 developed a simplified mathematical model for atmospheric convection.3 The model is a system of three ordinary differential equations now known as the Lorenz equations:

d x d t = σ ( y − x ) , d y d t = x ( ρ − z ) − y , d z d t = x y − β z . {\displaystyle {\begin{aligned}{\frac {\mathrm {d} x}{\mathrm {d} t}}&=\sigma (y-x),\\[6pt]{\frac {\mathrm {d} y}{\mathrm {d} t}}&=x(\rho -z)-y,\\[6pt]{\frac {\mathrm {d} z}{\mathrm {d} t}}&=xy-\beta z.\end{aligned}}}

The equations relate the properties of a two-dimensional fluid layer uniformly warmed from below and cooled from above. In particular, the equations describe the rate of change of three quantities with respect to time: x is proportional to the rate of convection, y to the horizontal temperature variation, and z to the vertical temperature variation.4 The constants σ, ρ, and β are system parameters proportional to the Prandtl number, Rayleigh number, and certain physical dimensions of the layer itself.5

The Lorenz equations can arise in simplified models for lasers,6 dynamos,7 thermosyphons,8 brushless DC motors,9 electric circuits,10 chemical reactions11 and forward osmosis.12 Interestingly, the same Lorenz equations were also derived in 1963 by Sauermann and Haken 13 for a single-mode laser. In 1975, Haken realized 14 that their equations derived in 1963 were mathematically equivalent to the original Lorenz equations. Haken's paper 15 thus started a new field called laser chaos or optical chaos. The Lorenz equations are often called Lorenz-Haken equations in optical literature. Later on, it was also shown the complex version of Lorenz equations also had laser equivalent ones. 16 The Lorenz equations are also the governing equations in Fourier space for the Malkus waterwheel.1718 The Malkus waterwheel exhibits chaotic motion where instead of spinning in one direction at a constant speed, its rotation will speed up, slow down, stop, change directions, and oscillate back and forth between combinations of such behaviors in an unpredictable manner.

From a technical standpoint, the Lorenz system is nonlinear, aperiodic, three-dimensional and deterministic. The Lorenz equations have been the subject of hundreds of research articles, and at least one book-length study.19

Analysis

One normally assumes that the parameters σ, ρ, and β are positive. Lorenz used the values σ = 10, ρ = 28, and β = ⁠8/3⁠. The system exhibits chaotic behavior for these (and nearby) values.20

If ρ < 1 then there is only one equilibrium point, which is at the origin. This point corresponds to no convection. All orbits converge to the origin, which is a global attractor, when ρ < 1.21

A pitchfork bifurcation occurs at ρ = 1, and for ρ > 1 two additional critical points appear at ( β ( ρ − 1 ) , β ( ρ − 1 ) , ρ − 1 ) and ( − β ( ρ − 1 ) , − β ( ρ − 1 ) , ρ − 1 ) . {\displaystyle \left({\sqrt {\beta (\rho -1)}},{\sqrt {\beta (\rho -1)}},\rho -1\right)\quad {\text{and}}\quad \left(-{\sqrt {\beta (\rho -1)}},-{\sqrt {\beta (\rho -1)}},\rho -1\right).} These correspond to steady convection. This pair of equilibrium points is stable only if

ρ < σ σ + β + 3 σ − β − 1 , {\displaystyle \rho <\sigma {\frac {\sigma +\beta +3}{\sigma -\beta -1}},}

which can hold only for positive ρ if σ > β + 1. At the critical value, both equilibrium points lose stability through a subcritical Hopf bifurcation.22

When ρ = 28, σ = 10, and β = ⁠8/3⁠, the Lorenz system has chaotic solutions (but not all solutions are chaotic). Almost all initial points will tend to an invariant set – the Lorenz attractor – a strange attractor, a fractal, and a self-excited attractor with respect to all three equilibria. Its Hausdorff dimension is estimated from above by the Lyapunov dimension (Kaplan-Yorke dimension) as 2.06±0.01,23 and the correlation dimension is estimated to be 2.05±0.01.24 The exact Lyapunov dimension formula of the global attractor can be found analytically under classical restrictions on the parameters:252627

3 − 2 ( σ + β + 1 ) σ + 1 + ( σ − 1 ) 2 + 4 σ ρ {\displaystyle 3-{\frac {2(\sigma +\beta +1)}{\sigma +1+{\sqrt {\left(\sigma -1\right)^{2}+4\sigma \rho }}}}}

The Lorenz attractor is difficult to analyze, but the action of the differential equation on the attractor is described by a fairly simple geometric model.28 Proving that this is indeed the case is the fourteenth problem on the list of Smale's problems. This problem was the first one to be resolved, by Warwick Tucker in 2002.29

For other values of ρ, the system displays knotted periodic orbits. For example, with ρ = 99.96 it becomes a T(3,2) torus knot.

Example solutions of the Lorenz system for different values of ρ
ρ = 14, σ = 10, β = ⁠8/3⁠ (Enlarge)ρ = 13, σ = 10, β = ⁠8/3⁠ (Enlarge)
ρ = 15, σ = 10, β = ⁠8/3⁠ (Enlarge)ρ = 28, σ = 10, β = ⁠8/3⁠ (Enlarge)
For small values of ρ, the system is stable and evolves to one of two fixed point attractors. When ρ > 24.74, the fixed points become repulsors and the trajectory is repelled by them in a very complex way.
Sensitive dependence on the initial condition
Time t = 1 (Enlarge)Time t = 2 (Enlarge)Time t = 3 (Enlarge)
These figures — made using ρ = 28, σ = 10, and β = ⁠8/3⁠ — show three time segments of the 3-D evolution of two trajectories (one in blue, the other in yellow) in the Lorenz attractor starting at two initial points that differ only by 10−5 in the x-coordinate. Initially, the two trajectories seem coincident (only the yellow one can be seen, as it is drawn over the blue one) but, after some time, the divergence is obvious.
Divergence of nearby trajectories.
Evolution of three initially nearby trajectories of the Lorenz system. In this animation the equation is numerically integrated using a Runge-Kutta routine — made using starting from three initial conditions (0.9,0,0) (green), (1.0,0,0) (blue) and (1.1,0,0) (red). Produced with WxMaxima.
The parameters are: ρ = 28 {\displaystyle \rho =28} , σ = 10 {\displaystyle \sigma =10} , and β = 8 / 3 {\displaystyle \beta =8/3} . Significant divergence is seen at around t = 24.0 {\displaystyle t=24.0} , beyond which the trajectories become uncorrelated. The full-sized graphic can be accessed here.

Connection to tent map

In Figure 4 of his paper,30 Lorenz plotted the relative maximum value in the z direction achieved by the system against the previous relative maximum in the z direction. This procedure later became known as a Lorenz map (not to be confused with a Poincaré plot, which plots the intersections of a trajectory with a prescribed surface). The resulting plot has a shape very similar to the tent map. Lorenz also found that when the maximum z value is above a certain cut-off, the system will switch to the next lobe. Combining this with the chaos known to be exhibited by the tent map, he showed that the system switches between the two lobes chaotically.

A Generalized Lorenz System

Over the past several years, a series of papers regarding high-dimensional Lorenz models have yielded a generalized Lorenz model,31 which can be simplified into the classical Lorenz model for three state variables or the following five-dimensional Lorenz model for five state variables:32 d x d t = σ ( y − x ) , d y d t = x ( ρ − z ) − y , d z d t = x y − x y 1 − β z , d y 1 d t = x z − 2 x z 1 − d 0 y 1 , d z 1 d t = 2 x y 1 − 4 β z 1 . {\displaystyle {\begin{aligned}{\frac {\mathrm {d} x}{\mathrm {d} t}}&=\sigma (y-x),\\[6pt]{\frac {\mathrm {d} y}{\mathrm {d} t}}&=x(\rho -z)-y,\\[6pt]{\frac {\mathrm {d} z}{\mathrm {d} t}}&=xy-xy_{1}-\beta z,\\[6pt]{\frac {\mathrm {d} y_{1}}{\mathrm {d} t}}&=xz-2xz_{1}-d_{0}y_{1},\\[6pt]{\frac {\mathrm {d} z_{1}}{\mathrm {d} t}}&=2xy_{1}-4\beta z_{1}.\end{aligned}}}

A choice of the parameter d 0 = 19 3 {\textstyle d_{0}={\dfrac {19}{3}}} has been applied to be consistent with the choice of the other parameters. See details in.3334

Simulations

Julia simulation

using Plots # define the Lorenz attractor @kwdef mutable struct Lorenz dt::Float64 = 0.02 σ::Float64 = 10 ρ::Float64 = 28 β::Float64 = 8/3 x::Float64 = 2 y::Float64 = 1 z::Float64 = 1 end function step!(l::Lorenz) dx = l.σ * (l.y - l.x) dy = l.x * (l.ρ - l.z) - l.y dz = l.x * l.y - l.β * l.z l.x += l.dt * dx l.y += l.dt * dy l.z += l.dt * dz end attractor = Lorenz() # initialize a 3D plot with 1 empty series plt = plot3d( 1, xlim = (-30, 30), ylim = (-30, 30), zlim = (0, 60), title = "Lorenz Attractor", marker = 2, ) # build an animated gif by pushing new points to the plot, saving every 10th frame @gif for i=1:1500 step!(attractor) push!(plt, attractor.x, attractor.y, attractor.z) end every 10

Maple simulation

deq := [diff(x(t), t) = 10*(y(t) - x(t)), diff(y(t), t) = 28*x(t) - y(t) - x(t)*z(t), diff(z(t), t) = x(t)*y(t) - 8/3*z(t)]: with(DEtools): DEplot3d(deq, {x(t), y(t), z(t)}, t = 0 .. 100, [[x(0) = 10, y(0) = 10, z(0) = 10]], stepsize = 0.01, x = -20 .. 20, y = -25 .. 25, z = 0 .. 50, linecolour = sin(t*Pi/3), thickness = 1, orientation = [-40, 80], title = `Lorenz Chaotic Attractor`);

Maxima simulation

[sigma, rho, beta]: [10, 28, 8/3]$ eq: [sigma*(y-x), x*(rho-z)-y, x*y-beta*z]$ sol: rk(eq, [x, y, z], [1, 0, 0], [t, 0, 50, 1/100])$ len: length(sol)$ x: makelist(sol[k][2], k, len)$ y: makelist(sol[k][3], k, len)$ z: makelist(sol[k][4], k, len)$ draw3d(points_joined=true, point_type=-1, points(x, y, z), proportional_axes=xyz)$

MATLAB simulation

% Solve over time interval [0,100] with initial conditions [1,1,1] % ''f'' is set of differential equations % ''a'' is array containing x, y, and z variables % ''t'' is time variable sigma = 10; beta = 8/3; rho = 28; f = @(t,a) [-sigma*a(1) + sigma*a(2); rho*a(1) - a(2) - a(1)*a(3); -beta*a(3) + a(1)*a(2)]; [t,a] = ode45(f,[0 100],[1 1 1]); % Runge-Kutta 4th/5th order ODE solver plot3(a(:,1),a(:,2),a(:,3))

Mathematica simulation

Standard way:

tend = 50; eq = {x'[t] == σ (y[t] - x[t]), y'[t] == x[t] (ρ - z[t]) - y[t], z'[t] == x[t] y[t] - β z[t]}; init = {x[0] == 10, y[0] == 10, z[0] == 10}; pars = {σ->10, ρ->28, β->8/3}; {xs, ys, zs} = NDSolveValue[{eq /. pars, init}, {x, y, z}, {t, 0, tend}]; ParametricPlot3D[{xs[t], ys[t], zs[t]}, {t, 0, tend}]

Less verbose:

lorenz = NonlinearStateSpaceModel[{{σ (y - x), x (ρ - z) - y, x y - β z}, {}}, {x, y, z}, {σ, ρ, β}]; soln[t_] = StateResponse[{lorenz, {10, 10, 10}}, {10, 28, 8/3}, {t, 0, 50}]; ParametricPlot3D[soln[t], {t, 0, 50}]

Python simulation

import matplotlib.pyplot as plt import numpy as np def lorenz(xyz, *, s=10, r=28, b=2.667): """ Parameters ---------- xyz : array-like, shape (3,) Point of interest in three-dimensional space. s, r, b : float Parameters defining the Lorenz attractor. Returns ------- xyz_dot : array, shape (3,) Values of the Lorenz attractor's partial derivatives at *xyz*. """ x, y, z = xyz x_dot = s*(y - x) y_dot = r*x - y - x*z z_dot = x*y - b*z return np.array([x_dot, y_dot, z_dot]) dt = 0.01 num_steps = 10000 xyzs = np.empty((num_steps + 1, 3)) # Need one more for the initial values xyzs[0] = (0., 1., 1.05) # Set initial values # Step through "time", calculating the partial derivatives at the current point # and using them to estimate the next point for i in range(num_steps): xyzs[i + 1] = xyzs[i] + lorenz(xyzs[i]) * dt # Plot ax = plt.figure().add_subplot(projection='3d') ax.plot(*xyzs.T, lw=0.6) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_zlabel("Z Axis") ax.set_title("Lorenz Attractor") plt.show()

R simulation

library(deSolve) library(plotly) # parameters prm <- list(sigma = 10, rho = 28, beta = 8/3) # initial values varini <- c( X = 1, Y = 1, Z = 1 ) Lorenz <- function (t, vars, prm) { with(as.list(vars), { dX <- prm$sigma*(Y - X) dY <- X*(prm$rho - Z) - Y dZ <- X*Y - prm$beta*Z return(list(c(dX, dY, dZ))) }) } times <- seq(from = 0, to = 100, by = 0.01) # call ode solver out <- ode(y = varini, times = times, func = Lorenz, parms = prm) # to assign color to points gfill <- function (repArr, long) { rep(repArr, ceiling(long/length(repArr)))[1:long] } dout <- as.data.frame(out) dout$color <- gfill(rainbow(10), nrow(dout)) # Graphics production with Plotly: plot_ly( data=dout, x = ~X, y = ~Y, z = ~Z, type = 'scatter3d', mode = 'lines', opacity = 1, line = list(width = 6, color = ~color, reverscale = FALSE) )

SageMath simulation

We try to solve this system of equations for ρ = 28 {\displaystyle \rho =28} , σ = 10 {\displaystyle \sigma =10} , β = 8 3 {\displaystyle \beta ={\frac {8}{3}}} , with initial conditions y 1 ( 0 ) = 0 {\displaystyle y_{1}(0)=0} , y 2 ( 0 ) = 0.5 {\displaystyle y_{2}(0)=0.5} , y 3 ( 0 ) = 0 {\displaystyle y_{3}(0)=0} .

# we solve the Lorenz system of the differential equations. # Runge-Kutta's method y_{n+1}= y_n + h*(k_1 + 2*k_2+2*k_3+k_4)/6; x_{n+1}=x_n+h # k_1=f(x_n,y_n), k_2=f(x_n+h/2, y_n+hk_1/2), k_3=f(x_n+h/2, y_n+hk_2/2), k_4=f(x_n+h, y_n+hk_3) # differential equation def Runge_Kutta(f,v,a,b,h,n): tlist = [a+i*h for i in range(n+1)] y = [[0,0,0] for _ in range(n+1)] # Taking length of f (number of equations). m=len(f) # Number of variables in v. vm=len(v) if m!=vm: return("error, number of equations is not equal with the number of variables.") for r in range(vm): y[0][r]=b[r] # making a vector and component will be a list # main part of the algorithm k1=[0 for _ in range(m)] k2=[0 for _ in range(m)] k3=[0 for _ in range(m)] k4=[0 for _ in range(m)] for i in range(1,n+1): # for each t_i, i=1, ... , n # k1=h*f(t_{i-1},x_1(t_{i-1}),...,x_m(t_{i-1})) for j in range(m): # for each f_{j+1}, j=0, ... , m-1 k1[j]=f[j].subs(t==tlist[i-1]) for r in range(vm): k1[j]=k1[j].subs(v[r]==y[i-1][r]) k1[j]=h*k1[j] for j in range(m): # k2=h*f(t_{i-1}+h/2,x_1(t_{i-1})+k1/2,...,x_m(t_{i-1}+k1/2)) k2[j]=f[j].subs(t==tlist[i-1]+h/2) for r in range(vm): k2[j]=k2[j].subs(v[r]==y[i-1][r]+k1[r]/2) k2[j]=h*k2[j] for j in range(m): # k3=h*f(t_{i-1}+h/2,x_1(t_{i-1})+k2/2,...,x_m(t_{i-1})+k2/2) k3[j]=f[j].subs(t==tlist[i-1]+h/2) for r in range(vm): k3[j]=k3[j].subs(v[r]==y[i-1][r]+k2[r]/2) k3[j]=h*k3[j] for j in range(m): # k4=h*f(t_{i-1}+h,x_1(t_{i-1})+k3,...,x_m(t_{i-1})+k3) k4[j]=f[j].subs(t==tlist[i-1]+h) for r in range(vm): k4[j]=k4[j].subs(v[r]==y[i-1][r]+k3[r]) k4[j]=h*k4[j] for j in range(m): # Now x_j(t_i)=x_j(t_{i-1})+(k1+2k2+2k3+k4)/6 y[i][j]=y[i-1][j]+(k1[j]+2*k2[j]+2*k3[j]+k4[j])/6 return(tlist,y) # (Figure 1) Here, we plot the solutions of the Lorenz ODE system. a=0.0 # t_0 b=[0.0,.50,0.0] # x_1(t_0), ... , x_m(t_0) t=var('t') x = var('x', n=3, latex_name='x') v=[x[ii] for ii in range(3)] f= [10*(x1-x0),x0*(28-x2)-x1,x0*x1-(8/3)*x2]; n=1600 h=0.0125 tlist,y=Runge_Kutta(f,v,a,b,h,n) #print(tlist) #print(y) T=point3d([[y[i][0],y[i][1],y[i][2]] for i in range(n)], color='red') S=line3d([[y[i][0],y[i][1],y[i][2]] for i in range(n)], color='red') show(T+S) # (Figure 2) Here, we plot every y1, y2, and y3 in terms of time. a=0.0 # t_0 b=[0.0,.50,0.0] # x_1(t_0), ... , x_m(t_0) t=var('t') x = var('x', n=3, latex_name='x') v=[x[ii] for ii in range(3)] Lorenz= [10*(x1-x0),x0*(28-x2)-x1,x0*x1-(8/3)*x2]; n=100 h=0.1 tlist,y=Runge_Kutta(Lorenz,v,a,b,h,n) #Runge_Kutta(f,v,0,b,h,n) #print(tlist) #print(y) P1=list_plot([[tlist[i],y[i][0]] for i in range(n)], plotjoined=True, color='red'); P2=list_plot([[tlist[i],y[i][1]] for i in range(n)], plotjoined=True, color='green'); P3=list_plot([[tlist[i],y[i][2]] for i in range(n)], plotjoined=True, color='yellow'); show(P1+P2+P3) # (Figure 3) Here, we plot the y and x or equivalently y2 and y1 a=0.0 # t_0 b=[0.0,.50,0.0] # x_1(t_0), ... , x_m(t_0) t=var('t') x = var('x', n=3, latex_name='x') v=[x[ii] for ii in range(3)] f= [10*(x1-x0),x0*(28-x2)-x1,x0*x1-(8/3)*x2]; n=800 h=0.025 tlist,y=Runge_Kutta(f,v,a,b,h,n) vv=[[y[i][0],y[i][1]] for i in range(n)]; #print(tlist) #print(y) T=points(vv, rgbcolor=(0.2,0.6, 0.1), pointsize=10) S=line(vv,rgbcolor=(0.2,0.6, 0.1)) show(T+S) # (Figure 4) Here, we plot the z and x or equivalently y3 and y1 a=0.0 # t_0 b=[0.0,.50,0.0] # x_1(t_0), ... , x_m(t_0) t=var('t') x = var('x', n=3, latex_name='x') v=[x[ii] for ii in range(3)] f= [10*(x1-x0),x0*(28-x2)-x1,x0*x1-(8/3)*x2]; n=800 h=0.025 tlist,y=Runge_Kutta(f,v,a,b,h,n) vv=[[y[i][0],y[i][2]] for i in range(n)]; #print(tlist) #print(y) T=points(vv, rgbcolor=(0.2,0.6, 0.1), pointsize=10) S=line(vv,rgbcolor=(0.2,0.6, 0.1)) show(T+S) # (Figure 5) Here, we plot the z and x or equivalently y3 and y2 a=0.0 # t_0 b=[0.0,.50,0.0] # x_1(t_0), ... , x_m(t_0) t=var('t') x = var('x', n=3, latex_name='x') v=[x[ii] for ii in range(3)] f= [10*(x1-x0),x0*(28-x2)-x1,x0*x1-(8/3)*x2]; n=800 h=0.025 tlist,y=Runge_Kutta(f,v,a,b,h,n) vv=[[y[i][1],y[i][2]] for i in range(n)]; #print(tlist) #print(y) T=points(vv, rgbcolor=(0.2,0.6, 0.1), pointsize=10) S=line(vv,rgbcolor=(0.2,0.6, 0.1)) show(T+S)

Applications

Model for atmospheric convection

As shown in Lorenz's original paper,35 the Lorenz system is a reduced version of a larger system studied earlier by Barry Saltzman.36 The Lorenz equations are derived from the Oberbeck–Boussinesq approximation to the equations describing fluid circulation in a shallow layer of fluid, heated uniformly from below and cooled uniformly from above.37 This fluid circulation is known as Rayleigh–Bénard convection. The fluid is assumed to circulate in two dimensions (vertical and horizontal) with periodic rectangular boundary conditions.38

The partial differential equations modeling the system's stream function and temperature are subjected to a spectral Galerkin approximation: the hydrodynamic fields are expanded in Fourier series, which are then severely truncated to a single term for the stream function and two terms for the temperature. This reduces the model equations to a set of three coupled, nonlinear ordinary differential equations. A detailed derivation may be found, for example, in nonlinear dynamics texts from Hilborn (2000), Appendix C; Bergé, Pomeau & Vidal (1984), Appendix D; or Shen (2016),39 Supplementary Materials.

Model for the nature of chaos and order in the atmosphere

The scientific community accepts that the chaotic features found in low-dimensional Lorenz models could represent features of the Earth's atmosphere,404142 yielding the statement of “weather is chaotic.” By comparison, based on the concept of attractor coexistence within the generalized Lorenz model43 and the original Lorenz model,4445 Shen and his co-authors proposed a revised view that “weather possesses both chaos and order with distinct predictability”.4647 The revised view, which is a build-up of the conventional view, is used to suggest that “the chaotic and regular features found in theoretical Lorenz models could better represent features of the Earth's atmosphere”.

Resolution of Smale's 14th problem

Smale's 14th problem asks, 'Do the properties of the Lorenz attractor exhibit that of a strange attractor?'. The problem was answered affirmatively by Warwick Tucker in 2002.48 To prove this result, Tucker used rigorous numerics methods like interval arithmetic and normal forms. First, Tucker defined a cross section Σ ⊂ { x 3 = r − 1 } {\displaystyle \Sigma \subset \{x_{3}=r-1\}} that is cut transversely by the flow trajectories. From this, one can define the first-return map P {\displaystyle P} , which assigns to each x ∈ Σ {\displaystyle x\in \Sigma } the point P ( x ) {\displaystyle P(x)} where the trajectory of x {\displaystyle x} first intersects Σ {\displaystyle \Sigma } .

Then the proof is split in three main points that are proved and imply the existence of a strange attractor.49 The three points are:

  • There exists a region N ⊂ Σ {\displaystyle N\subset \Sigma } invariant under the first-return map, meaning P ( N ) ⊂ N {\displaystyle P(N)\subset N} .
  • The return map admits a forward invariant cone field.
  • Vectors inside this invariant cone field are uniformly expanded by the derivative D P {\displaystyle DP} of the return map.

To prove the first point, we notice that the cross section Σ {\displaystyle \Sigma } is cut by two arcs formed by P ( Σ ) {\displaystyle P(\Sigma )} .50 Tucker covers the location of these two arcs by small rectangles R i {\displaystyle R_{i}} , the union of these rectangles gives N {\displaystyle N} . Now, the goal is to prove that for all points in N {\displaystyle N} , the flow will bring back the points in Σ {\displaystyle \Sigma } , in N {\displaystyle N} . To do that, we take a plan Σ ′ {\displaystyle \Sigma '} below Σ {\displaystyle \Sigma } at a distance h {\displaystyle h} small, then by taking the center c i {\displaystyle c_{i}} of R i {\displaystyle R_{i}} and using Euler integration method, one can estimate where the flow will bring c i {\displaystyle c_{i}} in Σ ′ {\displaystyle \Sigma '} which gives us a new point c i ′ {\displaystyle c_{i}'} . Then, one can estimate where the points in Σ {\displaystyle \Sigma } will be mapped in Σ ′ {\displaystyle \Sigma '} using Taylor expansion, this gives us a new rectangle R i ′ {\displaystyle R_{i}'} centered on c i {\displaystyle c_{i}} . Thus we know that all points in R i {\displaystyle R_{i}} will be mapped in R i ′ {\displaystyle R_{i}'} . The goal is to do this method recursively until the flow comes back to Σ {\displaystyle \Sigma } and we obtain a rectangle R f i {\displaystyle Rf_{i}} in Σ {\displaystyle \Sigma } such that we know that P ( R i ) ⊂ R f i {\displaystyle P(R_{i})\subset Rf_{i}} . The problem is that our estimation may become imprecise after several iterations, thus what Tucker does is to split R i ′ {\displaystyle R_{i}'} into smaller rectangles R i , j {\displaystyle R_{i,j}} and then apply the process recursively. Another problem is that as we are applying this algorithm, the flow becomes more 'horizontal',51 leading to a dramatic increase in imprecision. To prevent this, the algorithm changes the orientation of the cross sections, becoming either horizontal or vertical.

See also

Notes

Further reading

Wikimedia Commons has media related to Lorenz attractors.

References

  1. Lorenz (1963) - Lorenz, Edward Norton (1963). "Deterministic nonperiodic flow". Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. https://doi.org/10.1175%2F1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2

  2. Lorenz (1960) - Lorenz, Edward N. (1960). "The statistical prediction of solutions of dynamic equations" (PDF). Symposium on Numerical Weather Prediction in Tokyo. Archived from the original (PDF) on 2019-05-23. Retrieved 2020-09-16. https://web.archive.org/web/20190523190103/http://eaps4.mit.edu/research/Lorenz/The_Statistical_Prediction_of_Solutions_1962.pdf

  3. Lorenz (1963) - Lorenz, Edward Norton (1963). "Deterministic nonperiodic flow". Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. https://doi.org/10.1175%2F1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2

  4. Sparrow (1982) - Sparrow, Colin (1982). The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer.

  5. Sparrow (1982) - Sparrow, Colin (1982). The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer.

  6. Haken (1975) - Haken, H. (1975). "Analogy between higher instabilities in fluids and lasers". Physics Letters A. 53 (1): 77–78. Bibcode:1975PhLA...53...77H. doi:10.1016/0375-9601(75)90353-9. https://ui.adsabs.harvard.edu/abs/1975PhLA...53...77H

  7. Knobloch (1981) - Knobloch, Edgar (1981). "Chaos in the segmented disc dynamo". Physics Letters A. 82 (9): 439–440. Bibcode:1981PhLA...82..439K. doi:10.1016/0375-9601(81)90274-7. https://ui.adsabs.harvard.edu/abs/1981PhLA...82..439K

  8. Gorman, Widmann & Robbins (1986) - Gorman, M.; Widmann, P.J.; Robbins, K.A. (1986). "Nonlinear dynamics of a convection loop: A quantitative comparison of experiment with theory". Physica D. 19 (2): 255–267. Bibcode:1986PhyD...19..255G. doi:10.1016/0167-2789(86)90022-9. https://ui.adsabs.harvard.edu/abs/1986PhyD...19..255G

  9. Hemati (1994) - Hemati, N. (1994). "Strange attractors in brushless DC motors". IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 41 (1): 40–45. doi:10.1109/81.260218. ISSN 1057-7122. https://doi.org/10.1109%2F81.260218

  10. Cuomo & Oppenheim (1993) - Cuomo, Kevin M.; Oppenheim, Alan V. (1993). "Circuit implementation of synchronized chaos with applications to communications". Physical Review Letters. 71 (1): 65–68. Bibcode:1993PhRvL..71...65C. doi:10.1103/PhysRevLett.71.65. ISSN 0031-9007. PMID 10054374. https://ui.adsabs.harvard.edu/abs/1993PhRvL..71...65C

  11. Poland (1993) - Poland, Douglas (1993). "Cooperative catalysis and chemical chaos: a chemical model for the Lorenz equations". Physica D. 65 (1): 86–99. Bibcode:1993PhyD...65...86P. doi:10.1016/0167-2789(93)90006-M. https://ui.adsabs.harvard.edu/abs/1993PhyD...65...86P

  12. Tzenov (2014)[citation needed] - Tzenov, Stephan (2014). "Strange Attractors Characterizing the Osmotic Instability". arXiv:1406.0979v1 [physics.flu-dyn]. https://arxiv.org/abs/1406.0979v1

  13. Sauermann, H.; Haken, H. (1963). "Nonlinear Interaction of Laser Modes". Z. Phys. 173 (3): 261–275. Bibcode:1963ZPhy..173..261H. doi:10.1007/BF01377828. /wiki/Z._Phys.

  14. Haken (1975) - Haken, H. (1975). "Analogy between higher instabilities in fluids and lasers". Physics Letters A. 53 (1): 77–78. Bibcode:1975PhLA...53...77H. doi:10.1016/0375-9601(75)90353-9. https://ui.adsabs.harvard.edu/abs/1975PhLA...53...77H

  15. Haken (1975) - Haken, H. (1975). "Analogy between higher instabilities in fluids and lasers". Physics Letters A. 53 (1): 77–78. Bibcode:1975PhLA...53...77H. doi:10.1016/0375-9601(75)90353-9. https://ui.adsabs.harvard.edu/abs/1975PhLA...53...77H

  16. Ning, C.Z.; Haken, H. (1990). "Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations". Phys. Rev. A. 41 (7): 3826–3837. Bibcode:1990PhRvA..41.3826N. doi:10.1103/PhysRevA.41.3826. PMID 9903557. /wiki/Phys._Rev._A

  17. Kolář & Gumbs (1992) - Kolář, Miroslav; Gumbs, Godfrey (1992). "Theory for the experimental observation of chaos in a rotating waterwheel". Physical Review A. 45 (2): 626–637. Bibcode:1992PhRvA..45..626K. doi:10.1103/PhysRevA.45.626. PMID 9907027. https://ui.adsabs.harvard.edu/abs/1992PhRvA..45..626K

  18. Mishra & Sanghi (2006) - Mishra, Aashwin; Sanghi, Sanjeev (2006). "A study of the asymmetric Malkus waterwheel: The biased Lorenz equations". Chaos: An Interdisciplinary Journal of Nonlinear Science. 16 (1): 013114. Bibcode:2006Chaos..16a3114M. doi:10.1063/1.2154792. PMID 16599745. https://ui.adsabs.harvard.edu/abs/2006Chaos..16a3114M

  19. Sparrow (1982) - Sparrow, Colin (1982). The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer.

  20. Hirsch, Smale & Devaney (2003), pp. 303–305 - Hirsch, Morris W.; Smale, Stephen; Devaney, Robert (2003). Differential Equations, Dynamical Systems, & An Introduction to Chaos (Second ed.). Boston, MA: Academic Press. ISBN 978-0-12-349703-1.

  21. Hirsch, Smale & Devaney (2003), pp. 306+307 - Hirsch, Morris W.; Smale, Stephen; Devaney, Robert (2003). Differential Equations, Dynamical Systems, & An Introduction to Chaos (Second ed.). Boston, MA: Academic Press. ISBN 978-0-12-349703-1.

  22. Hirsch, Smale & Devaney (2003), pp. 307–308 - Hirsch, Morris W.; Smale, Stephen; Devaney, Robert (2003). Differential Equations, Dynamical Systems, & An Introduction to Chaos (Second ed.). Boston, MA: Academic Press. ISBN 978-0-12-349703-1.

  23. Kuznetsov, N.V.; Mokaev, T.N.; Kuznetsova, O.A.; Kudryashova, E.V. (2020). "The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension". Nonlinear Dynamics. 102 (2): 713–732. Bibcode:2020NonDy.102..713K. doi:10.1007/s11071-020-05856-4. https://doi.org/10.1007%2Fs11071-020-05856-4

  24. Grassberger & Procaccia (1983) - Grassberger, P.; Procaccia, I. (1983). "Measuring the strangeness of strange attractors". Physica D. 9 (1–2): 189–208. Bibcode:1983PhyD....9..189G. doi:10.1016/0167-2789(83)90298-1. https://ui.adsabs.harvard.edu/abs/1983PhyD....9..189G

  25. Leonov et al. (2016) - Leonov, G.A.; Kuznetsov, N.V.; Korzhemanova, N.A.; Kusakin, D.V. (2016). "Lyapunov dimension formula for the global attractor of the Lorenz system". Communications in Nonlinear Science and Numerical Simulation. 41: 84–103. arXiv:1508.07498. Bibcode:2016CNSNS..41...84L. doi:10.1016/j.cnsns.2016.04.032. S2CID 119614076. https://arxiv.org/abs/1508.07498

  26. Kuznetsov, N.V.; Mokaev, T.N.; Kuznetsova, O.A.; Kudryashova, E.V. (2020). "The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension". Nonlinear Dynamics. 102 (2): 713–732. Bibcode:2020NonDy.102..713K. doi:10.1007/s11071-020-05856-4. https://doi.org/10.1007%2Fs11071-020-05856-4

  27. Kuznetsov, Nikolay; Reitmann, Volker (2021). Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Cham: Springer. https://www.springer.com/gp/book/9783030509866

  28. Guckenheimer, John; Williams, R. F. (1979-12-01). "Structural stability of Lorenz attractors". Publications Mathématiques de l'Institut des Hautes Études Scientifiques. 50 (1): 59–72. doi:10.1007/BF02684769. ISSN 0073-8301. S2CID 55218285. http://www.numdam.org/item/PMIHES_1979__50__59_0/

  29. Tucker (2002) - Tucker, Warwick (2002). "A Rigorous ODE Solver and Smale's 14th Problem" (PDF). Foundations of Computational Mathematics. 2 (1): 53–117. CiteSeerX 10.1.1.545.3996. doi:10.1007/s002080010018. S2CID 353254. https://link.springer.com/content/pdf/10.1007/s002080010018.pdf

  30. Lorenz (1963) - Lorenz, Edward Norton (1963). "Deterministic nonperiodic flow". Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. https://doi.org/10.1175%2F1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2

  31. Shen, Bo-Wen (2019-03-01). "Aggregated Negative Feedback in a Generalized Lorenz Model". International Journal of Bifurcation and Chaos. 29 (3): 1950037–1950091. Bibcode:2019IJBC...2950037S. doi:10.1142/S0218127419500378. ISSN 0218-1274. S2CID 132494234. https://doi.org/10.1142%2FS0218127419500378

  32. Shen, Bo-Wen (2014-04-28). "Nonlinear Feedback in a Five-Dimensional Lorenz Model". Journal of the Atmospheric Sciences. 71 (5): 1701–1723. Bibcode:2014JAtS...71.1701S. doi:10.1175/jas-d-13-0223.1. ISSN 0022-4928. S2CID 123683839. https://dx.doi.org/10.1175/jas-d-13-0223.1

  33. Shen, Bo-Wen (2019-03-01). "Aggregated Negative Feedback in a Generalized Lorenz Model". International Journal of Bifurcation and Chaos. 29 (3): 1950037–1950091. Bibcode:2019IJBC...2950037S. doi:10.1142/S0218127419500378. ISSN 0218-1274. S2CID 132494234. https://doi.org/10.1142%2FS0218127419500378

  34. Shen, Bo-Wen (2014-04-28). "Nonlinear Feedback in a Five-Dimensional Lorenz Model". Journal of the Atmospheric Sciences. 71 (5): 1701–1723. Bibcode:2014JAtS...71.1701S. doi:10.1175/jas-d-13-0223.1. ISSN 0022-4928. S2CID 123683839. https://dx.doi.org/10.1175/jas-d-13-0223.1

  35. Lorenz (1963) - Lorenz, Edward Norton (1963). "Deterministic nonperiodic flow". Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. https://doi.org/10.1175%2F1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2

  36. Saltzman (1962) - Saltzman, Barry (1962). "Finite Amplitude Free Convection as an Initial Value Problem—I". Journal of the Atmospheric Sciences. 19 (4): 329–341. Bibcode:1962JAtS...19..329S. doi:10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2. https://doi.org/10.1175%2F1520-0469%281962%29019%3C0329%3AFAFCAA%3E2.0.CO%3B2

  37. Lorenz (1963) - Lorenz, Edward Norton (1963). "Deterministic nonperiodic flow". Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. https://doi.org/10.1175%2F1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2

  38. Lorenz (1963) - Lorenz, Edward Norton (1963). "Deterministic nonperiodic flow". Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. https://doi.org/10.1175%2F1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2

  39. Shen, B.-W. (2015-12-21). "Nonlinear feedback in a six-dimensional Lorenz model: impact of an additional heating term". Nonlinear Processes in Geophysics. 22 (6): 749–764. Bibcode:2015NPGeo..22..749S. doi:10.5194/npg-22-749-2015. ISSN 1607-7946. https://npg.copernicus.org/articles/22/749/2015/

  40. Ghil, Michael; Read, Peter; Smith, Leonard (2010-07-23). "Geophysical flows as dynamical systems: the influence of Hide's experiments". Astronomy & Geophysics. 51 (4): 4.28 – 4.35. Bibcode:2010A&G....51d..28G. doi:10.1111/j.1468-4004.2010.51428.x. ISSN 1366-8781. https://dx.doi.org/10.1111/j.1468-4004.2010.51428.x

  41. Read, P. (1993). Application of Chaos to Meteorology and Climate. In The Nature of Chaos; Mullin, T., Ed. Oxford, UK: Oxford Science Publications. pp. 220–260. ISBN 0198539541. 0198539541

  42. Shen, Bo-Wen; Pielke, Roger; Zeng, Xubin; Cui, Jialin; Faghih-Naini, Sara; Paxson, Wei; Kesarkar, Amit; Zeng, Xiping; Atlas, Robert (2022-11-12). "The Dual Nature of Chaos and Order in the Atmosphere". Atmosphere. 13 (11): 1892. Bibcode:2022Atmos..13.1892S. doi:10.3390/atmos13111892. ISSN 2073-4433. https://doi.org/10.3390%2Fatmos13111892

  43. Shen, Bo-Wen (2019-03-01). "Aggregated Negative Feedback in a Generalized Lorenz Model". International Journal of Bifurcation and Chaos. 29 (3): 1950037–1950091. Bibcode:2019IJBC...2950037S. doi:10.1142/S0218127419500378. ISSN 0218-1274. S2CID 132494234. https://doi.org/10.1142%2FS0218127419500378

  44. Yorke, James A.; Yorke, Ellen D. (1979-09-01). "Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model". Journal of Statistical Physics. 21 (3): 263–277. Bibcode:1979JSP....21..263Y. doi:10.1007/BF01011469. ISSN 1572-9613. S2CID 12172750. https://doi.org/10.1007/BF01011469

  45. Shen, Bo-Wen; Pielke, R. A.; Zeng, X.; Baik, J.-J.; Faghih-Naini, S.; Cui, J.; Atlas, R.; Reyes, T. A. L. (2021), Skiadas, Christos H.; Dimotikalis, Yiannis (eds.), "Is Weather Chaotic? Coexisting Chaotic and Non-chaotic Attractors within Lorenz Models", 13th Chaotic Modeling and Simulation International Conference, Springer Proceedings in Complexity, Cham: Springer International Publishing, pp. 805–825, doi:10.1007/978-3-030-70795-8_57, ISBN 978-3-030-70794-1, S2CID 245197840, retrieved 2022-12-22 978-3-030-70794-1

  46. Shen, Bo-Wen; Pielke, Roger; Zeng, Xubin; Cui, Jialin; Faghih-Naini, Sara; Paxson, Wei; Kesarkar, Amit; Zeng, Xiping; Atlas, Robert (2022-11-12). "The Dual Nature of Chaos and Order in the Atmosphere". Atmosphere. 13 (11): 1892. Bibcode:2022Atmos..13.1892S. doi:10.3390/atmos13111892. ISSN 2073-4433. https://doi.org/10.3390%2Fatmos13111892

  47. Shen, Bo-Wen; Pielke, Roger A.; Zeng, Xubin; Baik, Jong-Jin; Faghih-Naini, Sara; Cui, Jialin; Atlas, Robert (2021-01-01). "Is Weather Chaotic?: Coexistence of Chaos and Order within a Generalized Lorenz Model". Bulletin of the American Meteorological Society. 102 (1): E148 – E158. Bibcode:2021BAMS..102E.148S. doi:10.1175/BAMS-D-19-0165.1. ISSN 0003-0007. S2CID 208369617. https://doi.org/10.1175%2FBAMS-D-19-0165.1

  48. Tucker (2002) - Tucker, Warwick (2002). "A Rigorous ODE Solver and Smale's 14th Problem" (PDF). Foundations of Computational Mathematics. 2 (1): 53–117. CiteSeerX 10.1.1.545.3996. doi:10.1007/s002080010018. S2CID 353254. https://link.springer.com/content/pdf/10.1007/s002080010018.pdf

  49. Viana (2000) - Viana, Marcelo (2000). "What's new on Lorenz strange attractors?". The Mathematical Intelligencer. 22 (3): 6–19. doi:10.1007/BF03025276. S2CID 121427433. https://doi.org/10.1007%2FBF03025276

  50. Viana (2000) - Viana, Marcelo (2000). "What's new on Lorenz strange attractors?". The Mathematical Intelligencer. 22 (3): 6–19. doi:10.1007/BF03025276. S2CID 121427433. https://doi.org/10.1007%2FBF03025276

  51. Viana (2000) - Viana, Marcelo (2000). "What's new on Lorenz strange attractors?". The Mathematical Intelligencer. 22 (3): 6–19. doi:10.1007/BF03025276. S2CID 121427433. https://doi.org/10.1007%2FBF03025276