Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
List of integrals of logarithmic functions
List article

The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals.

Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.

We don't have any images related to List of integrals of logarithmic functions yet.
We don't have any YouTube videos related to List of integrals of logarithmic functions yet.
We don't have any PDF documents related to List of integrals of logarithmic functions yet.
We don't have any Books related to List of integrals of logarithmic functions yet.
We don't have any archived web articles related to List of integrals of logarithmic functions yet.

Integrals involving only logarithmic functions

∫ log a ⁡ x d x = x log a ⁡ x − x ln ⁡ a = x ln ⁡ a ( ln ⁡ x − 1 ) {\displaystyle \int \log _{a}x\,dx=x\log _{a}x-{\frac {x}{\ln a}}={\frac {x}{\ln a}}(\ln x-1)} ∫ ln ⁡ ( a x ) d x = x ln ⁡ ( a x ) − x = x ( ln ⁡ ( a x ) − 1 ) {\displaystyle \int \ln(ax)\,dx=x\ln(ax)-x=x(\ln(ax)-1)} ∫ ln ⁡ ( a x + b ) d x = a x + b a ( ln ⁡ ( a x + b ) − 1 ) {\displaystyle \int \ln(ax+b)\,dx={\frac {ax+b}{a}}(\ln(ax+b)-1)} ∫ ( ln ⁡ x ) 2 d x = x ( ln ⁡ x ) 2 − 2 x ln ⁡ x + 2 x {\displaystyle \int (\ln x)^{2}\,dx=x(\ln x)^{2}-2x\ln x+2x} ∫ ( ln ⁡ x ) n d x = ( − 1 ) n n ! x ∑ k = 0 n ( − ln ⁡ x ) k k ! {\displaystyle \int (\ln x)^{n}\,dx=(-1)^{n}n!x\sum _{k=0}^{n}{\frac {(-\ln x)^{k}}{k!}}} ∫ d x ln ⁡ x = ln ⁡ | ln ⁡ x | + ln ⁡ x + ∑ k = 2 ∞ ( ln ⁡ x ) k k ⋅ k ! {\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{k=2}^{\infty }{\frac {(\ln x)^{k}}{k\cdot k!}}} ∫ d x ln ⁡ x = li ⁡ ( x ) {\displaystyle \int {\frac {dx}{\ln x}}=\operatorname {li} (x)} , the logarithmic integral. ∫ d x ( ln ⁡ x ) n = − x ( n − 1 ) ( ln ⁡ x ) n − 1 + 1 n − 1 ∫ d x ( ln ⁡ x ) n − 1 (for  n ≠ 1 ) {\displaystyle \int {\frac {dx}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ ln ⁡ f ( x ) d x = x ln ⁡ f ( x ) − ∫ x f ′ ( x ) f ( x ) d x (for differentiable  f ( x ) > 0 ) {\displaystyle \int \ln f(x)\,dx=x\ln f(x)-\int x{\frac {f'(x)}{f(x)}}\,dx\qquad {\mbox{(for differentiable }}f(x)>0{\mbox{)}}}

Integrals involving logarithmic and power functions

∫ x m ln ⁡ x d x = x m + 1 ( ln ⁡ x m + 1 − 1 ( m + 1 ) 2 ) (for  m ≠ − 1 ) {\displaystyle \int x^{m}\ln x\,dx=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(for }}m\neq -1{\mbox{)}}} ∫ x m ( ln ⁡ x ) n d x = x m + 1 ( ln ⁡ x ) n m + 1 − n m + 1 ∫ x m ( ln ⁡ x ) n − 1 d x (for  m ≠ − 1 ) {\displaystyle \int x^{m}(\ln x)^{n}\,dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(for }}m\neq -1{\mbox{)}}} ∫ ( ln ⁡ x ) n d x x = ( ln ⁡ x ) n + 1 n + 1 (for  n ≠ − 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(for }}n\neq -1{\mbox{)}}} ∫ ln ⁡ x d x x m = − ln ⁡ x ( m − 1 ) x m − 1 − 1 ( m − 1 ) 2 x m − 1 (for  m ≠ 1 ) {\displaystyle \int {\frac {\ln x\,dx}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}} ∫ ( ln ⁡ x ) n d x x m = − ( ln ⁡ x ) n ( m − 1 ) x m − 1 + n m − 1 ∫ ( ln ⁡ x ) n − 1 d x x m (for  m ≠ 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}} ∫ x m d x ( ln ⁡ x ) n = − x m + 1 ( n − 1 ) ( ln ⁡ x ) n − 1 + m + 1 n − 1 ∫ x m d x ( ln ⁡ x ) n − 1 (for  n ≠ 1 ) {\displaystyle \int {\frac {x^{m}\,dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ d x x ln ⁡ x = ln ⁡ | ln ⁡ x | {\displaystyle \int {\frac {dx}{x\ln x}}=\ln \left|\ln x\right|} ∫ d x x ln ⁡ x ln ⁡ ln ⁡ x = ln ⁡ | ln ⁡ | ln ⁡ x | | {\displaystyle \int {\frac {dx}{x\ln x\ln \ln x}}=\ln \left|\ln \left|\ln x\right|\right|} , etc. ∫ d x x ln ⁡ ln ⁡ x = li ⁡ ( ln ⁡ x ) {\displaystyle \int {\frac {dx}{x\ln \ln x}}=\operatorname {li} (\ln x)} ∫ d x x n ln ⁡ x = ln ⁡ | ln ⁡ x | + ∑ k = 1 ∞ ( − 1 ) k ( n − 1 ) k ( ln ⁡ x ) k k ⋅ k ! {\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln \left|\ln x\right|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(n-1)^{k}(\ln x)^{k}}{k\cdot k!}}} ∫ d x x ( ln ⁡ x ) n = − 1 ( n − 1 ) ( ln ⁡ x ) n − 1 (for  n ≠ 1 ) {\displaystyle \int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ ln ⁡ ( x 2 + a 2 ) d x = x ln ⁡ ( x 2 + a 2 ) − 2 x + 2 a tan − 1 ⁡ x a {\displaystyle \int \ln(x^{2}+a^{2})\,dx=x\ln(x^{2}+a^{2})-2x+2a\tan ^{-1}{\frac {x}{a}}} ∫ x x 2 + a 2 ln ⁡ ( x 2 + a 2 ) d x = 1 4 ln 2 ⁡ ( x 2 + a 2 ) {\displaystyle \int {\frac {x}{x^{2}+a^{2}}}\ln(x^{2}+a^{2})\,dx={\frac {1}{4}}\ln ^{2}(x^{2}+a^{2})}

Integrals involving logarithmic and trigonometric functions

∫ sin ⁡ ( ln ⁡ x ) d x = x 2 ( sin ⁡ ( ln ⁡ x ) − cos ⁡ ( ln ⁡ x ) ) {\displaystyle \int \sin(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))} ∫ cos ⁡ ( ln ⁡ x ) d x = x 2 ( sin ⁡ ( ln ⁡ x ) + cos ⁡ ( ln ⁡ x ) ) {\displaystyle \int \cos(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))}

Integrals involving logarithmic and exponential functions

∫ e x ( x ln ⁡ x − x − 1 x ) d x = e x ( x ln ⁡ x − x − ln ⁡ x ) {\displaystyle \int e^{x}\left(x\ln x-x-{\frac {1}{x}}\right)\,dx=e^{x}(x\ln x-x-\ln x)} ∫ 1 e x ( 1 x − ln ⁡ x ) d x = ln ⁡ x e x {\displaystyle \int {\frac {1}{e^{x}}}\left({\frac {1}{x}}-\ln x\right)\,dx={\frac {\ln x}{e^{x}}}} ∫ e x ( 1 ln ⁡ x − 1 x ( ln ⁡ x ) 2 ) d x = e x ln ⁡ x {\displaystyle \int e^{x}\left({\frac {1}{\ln x}}-{\frac {1}{x(\ln x)^{2}}}\right)\,dx={\frac {e^{x}}{\ln x}}}

n consecutive integrations

For n {\displaystyle n} consecutive integrations, the formula

∫ ln ⁡ x d x = x ( ln ⁡ x − 1 ) + C 0 {\displaystyle \int \ln x\,dx=x(\ln x-1)+C_{0}}

generalizes to

∫ ⋯ ∫ ln ⁡ x d x ⋯ d x = x n n ! ( ln x − ∑ k = 1 n 1 k ) + ∑ k = 0 n − 1 C k x k k ! {\displaystyle \int \dotsi \int \ln x\,dx\dotsm dx={\frac {x^{n}}{n!}}\left(\ln \,x-\sum _{k=1}^{n}{\frac {1}{k}}\right)+\sum _{k=0}^{n-1}C_{k}{\frac {x^{k}}{k!}}}

See also