Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of krypton
Isotopes of the element Krypton

There are 34 known isotopes of krypton (36Kr) with atomic mass numbers from 67 to 103. Naturally occurring krypton is made of five stable isotopes and one (78Kr) which is slightly radioactive with an extremely long half-life, plus traces of radioisotopes that are produced by cosmic rays in the atmosphere.

We don't have any images related to Isotopes of krypton yet.
We don't have any YouTube videos related to Isotopes of krypton yet.
We don't have any PDF documents related to Isotopes of krypton yet.
We don't have any Books related to Isotopes of krypton yet.
We don't have any archived web articles related to Isotopes of krypton yet.

List of isotopes

Nuclide1ZNIsotopic mass (Da)234Half-life567Decaymode89Daughterisotope1011Spin andparity121314Natural abundance (mole fraction)
Excitation energyNormal proportion15Range of variation
67Kr363166.98331(46)#7.4(29) msβ+? (63%)67Br3/2-#
2p (37%)65Se
68Kr363267.97249(54)#21.6(33) msβ+, p (>90%)67Se0+
β+? (<10%)68Br
p?67Br
69Kr363368.96550(32)#27.9(8) msβ+, p (94%)68Se(5/2−)
β+ (6%)69Br
70Kr363469.95588(22)#45.00(14) msβ+ (>98.7%)70Br0+
β+, p (<1.3%)69Se
71Kr363570.95027(14)98.8(3) msβ+ (97.9%)71Br(5/2)−
β+, p (2.1%)70Se
72Kr363671.9420924(86)17.16(18) sβ+72Br0+
73Kr363772.9392892(71)27.3(10) sβ+ (99.75%)73Br(3/2)−
β+, p (0.25%)72Se
73mKr433.55(13) keV107(10) nsIT73Kr(9/2+)
74Kr363873.9330840(22)11.50(11) minβ+74Br0+
75Kr363974.9309457(87)4.60(7) minβ+75Br5/2+
76Kr364075.9259107(43)14.8(1) hβ+76Br0+
77Kr364176.9246700(21)72.6(9) minβ+77Br5/2+
77mKr66.50(5) keV118(12) nsIT77Kr3/2−
78Kr16364277.92036634(33)9.2 +5.5−2.6 ±1.3×1021 y17Double EC78Se0+0.00355(3)
79Kr364378.9200829(37)35.04(10) hβ+79Br1/2−
79mKr129.77(5) keV50(3) sIT79Kr7/2+
80Kr364479.91637794(75)Stable0+0.02286(10)
81Kr18364580.9165897(12)2.29(11)×105 yEC81Br7/2+6×10−1319
81mKr190.64(4) keV13.10(3) sIT81Kr1/2−
EC (0.0025%)81Br
82Kr364681.9134811537(59)Stable0+0.11593(31)
83Kr20364782.914126516(9)Stable9/2+0.11500(19)
83m1Kr9.4053(8) keV156.8(5) nsIT83Kr7/2+
83m2Kr41.5575(7) keV1.830(13) hIT83Kr1/2−
84Kr21364883.9114977271(41)Stable0+0.56987(15)
84mKr3236.07(18) keV1.83(4) μsIT84Kr8+
85Kr22364984.9125273(21)10.728(7) yβ−85Rb9/2+1×10−1123
85m1Kr304.871(20) keV4.480(8) hβ− (78.8%)85Rb1/2−
IT (21.2%)85Kr
85m2Kr1991.8(2) keV1.82(5) μsIT85Kr(17/2+)
86Kr2425365085.9106106247(40)Observationally Stable260+0.17279(41)
87Kr365186.91335476(26)76.3(5) minβ−87Rb5/2+
88Kr365287.9144479(28)2.825(19) hβ−88Rb0+
89Kr27365388.9178354(23)3.15(4) minβ−89Rb3/2+
90Kr365489.9195279(20)32.32(9) sβ−90mRb0+
91Kr365590.9238063(24)8.57(4) sβ−91Rb5/2+
β−, n?90Rb
92Kr28365691.9261731(29)1.840(8) sβ− (99.97%)92Rb0+
β−, n (0.0332%)91Rb
93Kr365792.9311472(27)1.287(10) sβ− (98.05%)93Rb1/2+
β−, n (1.95%)92Rb
94Kr365893.934140(13)212(4) msβ− (98.89%)94Rb0+
β−, n (1.11%)93Rb
95Kr365994.939711(20)114(3) msβ− (97.13%)95Rb1/2+
β−, n (2.87%)94Rb
β−, 2n?93Rb
95mKr195.5(3) keV1.582(22) μsIT95Kr(7/2+)
96Kr366095.942998(62)2980(8) msβ− (96.3%)96Rb0+
β−, n (3.7%)95Rb
97Kr366196.94909(14)62.2(32) msβ− (93.3%)97Rb3/2+#
β−, n (6.7%)96Rb
β−, 2n?95Rb
98Kr366297.95264(32)#42.8(36) msβ− (93.0%)98Rb0+
β−, n (7.0%)97Rb
β−, 2n?96Rb
99Kr366398.95878(43)#40(11) msβ− (89%)99Rb5/2−#
β−, n (11%)98Rb
β−, 2n?97Rb
100Kr366499.96300(43)#12(8) msβ−100Rb0+
β−, n?99Rb
β−, 2n?98Rb
101Kr3665100.96932(54)#9# ms[>400 ns]β−?101Rb5/2+#
β−, n?100Rb
β−, 2n?99Rb
102Kr3036660+
103Kr313667
This table header & footer:
  • view
  • The isotopic composition refers to that in air.

Notable isotopes

Krypton-81

Krypton-81 is useful in determining how old the water beneath the ground is.32 Radioactive krypton-81 is the product of spallation reactions with cosmic rays striking gases present in the Earth atmosphere, along with the six stable or nearly stable krypton isotopes.33 Krypton-81 has a half-life of about 229,000 years.

Krypton-81 is used for dating ancient (50,000- to 800,000-year-old) groundwater and to determine their residence time in deep aquifers. One of the main technical limitations of the method is that it requires the sampling of very large volumes of water: several hundred liters or a few cubic meters of water. This is particularly challenging for dating pore water in deep clay aquitards with very low hydraulic conductivity.34

Krypton-85

Main article: Krypton-85

Krypton-85 has a half-life of about 10.75 years. This isotope is produced by the nuclear fission of uranium and plutonium in nuclear weapons testing and in nuclear reactors, as well as by cosmic rays. An important goal of the Limited Nuclear Test Ban Treaty of 1963 was to eliminate the release of such radioisotopes into the atmosphere, and since 1963 much of that krypton-85 has had time to decay. However, it is almost inevitable that krypton-85 is released during the reprocessing of fuel rods from nuclear reactors.35

Atmospheric concentration

See also: Nuclear reprocessing

The atmospheric concentration of krypton-85 around the North Pole is about 30 percent higher than that at the Amundsen–Scott South Pole Station because nearly all of the world's nuclear reactors and all of its major nuclear reprocessing plants are located in the northern hemisphere, and also well-north of the equator.36 To be more specific, those nuclear reprocessing plants with significant capacities are located in the United States, the United Kingdom, the French Republic, the Russian Federation, Mainland China (PRC), Japan, India, and Pakistan.

Krypton-86

Krypton-86 was formerly used to define the meter from 1960 until 1983, when the definition of the meter was based on the wavelength of the 606 nm (orange) spectral line of a krypton-86 atom.37

Others

All other radioisotopes of krypton have half-lives of less than one day, except for krypton-79, a positron emitter with a half-life of about 35.0 hours.

Sources

References

  1. mKr – Excited nuclear isomer. /wiki/Nuclear_isomer

  2. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  3. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  4. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  5. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  6. Bold half-life – nearly stable, half-life longer than age of universe. /wiki/Age_of_universe

  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Modes of decay: n:Neutron emission /wiki/Neutron_emission

  10. Bold italics symbol as daughter – Daughter product is nearly stable.

  11. Bold symbol as daughter – Daughter product is stable.

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. ( ) spin value – Indicates spin with weak assignment arguments.

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  16. Primordial radionuclide /wiki/Primordial_nuclide

  17. Patrignani, C.; et al. (Particle Data Group) (2016). "Review of Particle Physics". Chinese Physics C. 40 (10): 100001. Bibcode:2016ChPhC..40j0001P. doi:10.1088/1674-1137/40/10/100001. See p. 768 /wiki/Particle_Data_Group

  18. Used to date groundwater /wiki/Groundwater

  19. Lu, Zheng-Tian (1 March 2013). "What trapped atoms reveal about global groundwater". Physics Today. 66 (3): 74–75. Bibcode:2013PhT....66c..74L. doi:10.1063/PT.3.1926. Retrieved 29 June 2024. https://pubs.aip.org/physicstoday/article/66/3/74/414350/What-trapped-atoms-reveal-about-global

  20. Fission product /wiki/Fission_product

  21. Fission product /wiki/Fission_product

  22. Fission product /wiki/Fission_product

  23. Lu, Zheng-Tian (1 March 2013). "What trapped atoms reveal about global groundwater". Physics Today. 66 (3): 74–75. Bibcode:2013PhT....66c..74L. doi:10.1063/PT.3.1926. Retrieved 29 June 2024. https://pubs.aip.org/physicstoday/article/66/3/74/414350/What-trapped-atoms-reveal-about-global

  24. Formerly used to define the meter /wiki/History_of_the_metre#Krypton_standard

  25. Fission product /wiki/Fission_product

  26. Believed to decay by β−β− to 86Sr

  27. Fission product /wiki/Fission_product

  28. Fission product /wiki/Fission_product

  29. Smith, Matthew B.; Murböck, Tobias; Dunling, Eleanor; Jacobs, Andrew; Kootte, Brian; Lan, Yang; Leistenschneider, Erich; Lunney, David; Lykiardopoulou, Eleni Marina; Mukul, Ish; Paul, Stefan F.; Reiter, Moritz P.; Will, Christian; Dilling, Jens; Kwiatkowski, Anna A. (2020). "High-precision mass measurement of neutron-rich 96Kr". Hyperfine Interactions. 241 (1): 59. Bibcode:2020HyInt.241...59S. doi:10.1007/s10751-020-01722-2. S2CID 220512482. https://link.springer.com/article/10.1007/s10751-020-01722-2

  30. Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083. https://journals.aps.org/prc/abstract/10.1103/PhysRevC.103.014614

  31. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4): 044313. doi:10.1103/PhysRevC.109.044313. /wiki/Doi_(identifier)

  32. Le-Yi Tu, Guo-Min Yang, Cun-Feng Cheng, Gu-Liang Liu, Xiang-Yang Zhang, and Shui-Ming Hu (2014). "Analysis of Krypton-85 and Krypton-81 in a Few Liters of Air". Analytical Chemistry. 86 (8): 4002–4007.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Analytical_Chemistry

  33. Leya, I.; Gilabert, E.; Lavielle, B.; Wiechert, U.; Wieler, W. (2004). "Production rates for cosmogenic krypton and argon isotopes in H-chondrites with known 36Cl-36Ar ages" (PDF). Antarctic Meteorite Research. 17: 185–199. Bibcode:2004AMR....17..185L. https://core.ac.uk/download/pdf/51485498.pdf

  34. N. Thonnard; L. D. MeKay; T. C. Labotka (2001). Development of Laser-Based Resonance Ionization Techniques for 81-Kr and 85-Kr Measurements in the Geosciences (PDF) (Report). University of Tennessee, Institute for Rare Isotope Measurements. pp. 4–7. doi:10.2172/809813. https://digital.library.unt.edu/ark:/67531/metadc737461/m2/1/high_res_d/809813.pdf

  35. "Environmental Consequences Of Atmospheric Krypton-85" (PDF). p. 8. Retrieved 2024-12-08. https://inis.iaea.org/collection/NCLCollectionStore/_Public/11/569/11569296.pdf

  36. "Resources on Isotopes". U.S. Geological Survey. Archived from the original on 2001-09-24. Retrieved 2007-03-20. https://web.archive.org/web/20010924204348/http://wwwrcamnl.wr.usgs.gov/isoig/period/kr_iig.html

  37. Baird, K. M.; Howlett, L. E. (1963). "The International Length Standard". Applied Optics. 2 (5): 455–463. Bibcode:1963ApOpt...2..455B. doi:10.1364/AO.2.000455. /wiki/Applied_Optics