Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Kelvin functions

In applied mathematics, the Kelvin functions berν(x) and beiν(x) are the real and imaginary parts, respectively, of

J ν ( x e 3 π i 4 ) , {\displaystyle J_{\nu }\left(xe^{\frac {3\pi i}{4}}\right),\,}

where x is real, and (z), is the νth order Bessel function of the first kind. Similarly, the functions kerν(x) and keiν(x) are the real and imaginary parts, respectively, of

K ν ( x e π i 4 ) , {\displaystyle K_{\nu }\left(xe^{\frac {\pi i}{4}}\right),\,}

where (z) is the νth order modified Bessel function of the second kind.

These functions are named after William Thomson, 1st Baron Kelvin.

While the Kelvin functions are defined as the real and imaginary parts of Bessel functions with x taken to be real, the functions can be analytically continued for complex arguments xe, 0 ≤ φ < 2π. With the exception of bern(x) and bein(x) for integral n, the Kelvin functions have a branch point at x = 0.

Below, Γ(z) is the gamma function and ψ(z) is the digamma function.

We don't have any images related to Kelvin functions yet.
We don't have any YouTube videos related to Kelvin functions yet.
We don't have any PDF documents related to Kelvin functions yet.
We don't have any Books related to Kelvin functions yet.
We don't have any archived web articles related to Kelvin functions yet.

ber(x)

For integers n, bern(x) has the series expansion

b e r n ( x ) = ( x 2 ) n ∑ k ≥ 0 cos ⁡ [ ( 3 n 4 + k 2 ) π ] k ! Γ ( n + k + 1 ) ( x 2 4 ) k , {\displaystyle \mathrm {ber} _{n}(x)=\left({\frac {x}{2}}\right)^{n}\sum _{k\geq 0}{\frac {\cos \left[\left({\frac {3n}{4}}+{\frac {k}{2}}\right)\pi \right]}{k!\Gamma (n+k+1)}}\left({\frac {x^{2}}{4}}\right)^{k},}

where Γ(z) is the gamma function. The special case ber0(x), commonly denoted as just ber(x), has the series expansion

b e r ( x ) = 1 + ∑ k ≥ 1 ( − 1 ) k [ ( 2 k ) ! ] 2 ( x 2 ) 4 k {\displaystyle \mathrm {ber} (x)=1+\sum _{k\geq 1}{\frac {(-1)^{k}}{[(2k)!]^{2}}}\left({\frac {x}{2}}\right)^{4k}}

and asymptotic series

b e r ( x ) ∼ e x 2 2 π x ( f 1 ( x ) cos ⁡ α + g 1 ( x ) sin ⁡ α ) − k e i ( x ) π {\displaystyle \mathrm {ber} (x)\sim {\frac {e^{\frac {x}{\sqrt {2}}}}{\sqrt {2\pi x}}}\left(f_{1}(x)\cos \alpha +g_{1}(x)\sin \alpha \right)-{\frac {\mathrm {kei} (x)}{\pi }}} ,

where

α = x 2 − π 8 , {\displaystyle \alpha ={\frac {x}{\sqrt {2}}}-{\frac {\pi }{8}},} f 1 ( x ) = 1 + ∑ k ≥ 1 cos ⁡ ( k π / 4 ) k ! ( 8 x ) k ∏ l = 1 k ( 2 l − 1 ) 2 {\displaystyle f_{1}(x)=1+\sum _{k\geq 1}{\frac {\cos(k\pi /4)}{k!(8x)^{k}}}\prod _{l=1}^{k}(2l-1)^{2}} g 1 ( x ) = ∑ k ≥ 1 sin ⁡ ( k π / 4 ) k ! ( 8 x ) k ∏ l = 1 k ( 2 l − 1 ) 2 . {\displaystyle g_{1}(x)=\sum _{k\geq 1}{\frac {\sin(k\pi /4)}{k!(8x)^{k}}}\prod _{l=1}^{k}(2l-1)^{2}.}

bei(x)

For integers n, bein(x) has the series expansion

b e i n ( x ) = ( x 2 ) n ∑ k ≥ 0 sin ⁡ [ ( 3 n 4 + k 2 ) π ] k ! Γ ( n + k + 1 ) ( x 2 4 ) k . {\displaystyle \mathrm {bei} _{n}(x)=\left({\frac {x}{2}}\right)^{n}\sum _{k\geq 0}{\frac {\sin \left[\left({\frac {3n}{4}}+{\frac {k}{2}}\right)\pi \right]}{k!\Gamma (n+k+1)}}\left({\frac {x^{2}}{4}}\right)^{k}.}

The special case bei0(x), commonly denoted as just bei(x), has the series expansion

b e i ( x ) = ∑ k ≥ 0 ( − 1 ) k [ ( 2 k + 1 ) ! ] 2 ( x 2 ) 4 k + 2 {\displaystyle \mathrm {bei} (x)=\sum _{k\geq 0}{\frac {(-1)^{k}}{[(2k+1)!]^{2}}}\left({\frac {x}{2}}\right)^{4k+2}}

and asymptotic series

b e i ( x ) ∼ e x 2 2 π x [ f 1 ( x ) sin ⁡ α − g 1 ( x ) cos ⁡ α ] − k e r ( x ) π , {\displaystyle \mathrm {bei} (x)\sim {\frac {e^{\frac {x}{\sqrt {2}}}}{\sqrt {2\pi x}}}[f_{1}(x)\sin \alpha -g_{1}(x)\cos \alpha ]-{\frac {\mathrm {ker} (x)}{\pi }},}

where α, f 1 ( x ) {\displaystyle f_{1}(x)} , and g 1 ( x ) {\displaystyle g_{1}(x)} are defined as for ber(x).

ker(x)

For integers n, kern(x) has the (complicated) series expansion

k e r n ( x ) = − ln ⁡ ( x 2 ) b e r n ( x ) + π 4 b e i n ( x ) + 1 2 ( x 2 ) − n ∑ k = 0 n − 1 cos ⁡ [ ( 3 n 4 + k 2 ) π ] ( n − k − 1 ) ! k ! ( x 2 4 ) k + 1 2 ( x 2 ) n ∑ k ≥ 0 cos ⁡ [ ( 3 n 4 + k 2 ) π ] ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! ( x 2 4 ) k . {\displaystyle {\begin{aligned}&\mathrm {ker} _{n}(x)=-\ln \left({\frac {x}{2}}\right)\mathrm {ber} _{n}(x)+{\frac {\pi }{4}}\mathrm {bei} _{n}(x)\\&+{\frac {1}{2}}\left({\frac {x}{2}}\right)^{-n}\sum _{k=0}^{n-1}\cos \left[\left({\frac {3n}{4}}+{\frac {k}{2}}\right)\pi \right]{\frac {(n-k-1)!}{k!}}\left({\frac {x^{2}}{4}}\right)^{k}\\&+{\frac {1}{2}}\left({\frac {x}{2}}\right)^{n}\sum _{k\geq 0}\cos \left[\left({\frac {3n}{4}}+{\frac {k}{2}}\right)\pi \right]{\frac {\psi (k+1)+\psi (n+k+1)}{k!(n+k)!}}\left({\frac {x^{2}}{4}}\right)^{k}.\end{aligned}}}

The special case ker0(x), commonly denoted as just ker(x), has the series expansion

k e r ( x ) = − ln ⁡ ( x 2 ) b e r ( x ) + π 4 b e i ( x ) + ∑ k ≥ 0 ( − 1 ) k ψ ( 2 k + 1 ) [ ( 2 k ) ! ] 2 ( x 2 4 ) 2 k {\displaystyle \mathrm {ker} (x)=-\ln \left({\frac {x}{2}}\right)\mathrm {ber} (x)+{\frac {\pi }{4}}\mathrm {bei} (x)+\sum _{k\geq 0}(-1)^{k}{\frac {\psi (2k+1)}{[(2k)!]^{2}}}\left({\frac {x^{2}}{4}}\right)^{2k}}

and the asymptotic series

k e r ( x ) ∼ π 2 x e − x 2 [ f 2 ( x ) cos ⁡ β + g 2 ( x ) sin ⁡ β ] , {\displaystyle \mathrm {ker} (x)\sim {\sqrt {\frac {\pi }{2x}}}e^{-{\frac {x}{\sqrt {2}}}}[f_{2}(x)\cos \beta +g_{2}(x)\sin \beta ],}

where

β = x 2 + π 8 , {\displaystyle \beta ={\frac {x}{\sqrt {2}}}+{\frac {\pi }{8}},} f 2 ( x ) = 1 + ∑ k ≥ 1 ( − 1 ) k cos ⁡ ( k π / 4 ) k ! ( 8 x ) k ∏ l = 1 k ( 2 l − 1 ) 2 {\displaystyle f_{2}(x)=1+\sum _{k\geq 1}(-1)^{k}{\frac {\cos(k\pi /4)}{k!(8x)^{k}}}\prod _{l=1}^{k}(2l-1)^{2}} g 2 ( x ) = ∑ k ≥ 1 ( − 1 ) k sin ⁡ ( k π / 4 ) k ! ( 8 x ) k ∏ l = 1 k ( 2 l − 1 ) 2 . {\displaystyle g_{2}(x)=\sum _{k\geq 1}(-1)^{k}{\frac {\sin(k\pi /4)}{k!(8x)^{k}}}\prod _{l=1}^{k}(2l-1)^{2}.}

kei(x)

For integer n, kein(x) has the series expansion

k e i n ( x ) = − ln ⁡ ( x 2 ) b e i n ( x ) − π 4 b e r n ( x ) − 1 2 ( x 2 ) − n ∑ k = 0 n − 1 sin ⁡ [ ( 3 n 4 + k 2 ) π ] ( n − k − 1 ) ! k ! ( x 2 4 ) k + 1 2 ( x 2 ) n ∑ k ≥ 0 sin ⁡ [ ( 3 n 4 + k 2 ) π ] ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! ( x 2 4 ) k . {\displaystyle {\begin{aligned}&\mathrm {kei} _{n}(x)=-\ln \left({\frac {x}{2}}\right)\mathrm {bei} _{n}(x)-{\frac {\pi }{4}}\mathrm {ber} _{n}(x)\\&-{\frac {1}{2}}\left({\frac {x}{2}}\right)^{-n}\sum _{k=0}^{n-1}\sin \left[\left({\frac {3n}{4}}+{\frac {k}{2}}\right)\pi \right]{\frac {(n-k-1)!}{k!}}\left({\frac {x^{2}}{4}}\right)^{k}\\&+{\frac {1}{2}}\left({\frac {x}{2}}\right)^{n}\sum _{k\geq 0}\sin \left[\left({\frac {3n}{4}}+{\frac {k}{2}}\right)\pi \right]{\frac {\psi (k+1)+\psi (n+k+1)}{k!(n+k)!}}\left({\frac {x^{2}}{4}}\right)^{k}.\end{aligned}}}

The special case kei0(x), commonly denoted as just kei(x), has the series expansion

k e i ( x ) = − ln ⁡ ( x 2 ) b e i ( x ) − π 4 b e r ( x ) + ∑ k ≥ 0 ( − 1 ) k ψ ( 2 k + 2 ) [ ( 2 k + 1 ) ! ] 2 ( x 2 4 ) 2 k + 1 {\displaystyle \mathrm {kei} (x)=-\ln \left({\frac {x}{2}}\right)\mathrm {bei} (x)-{\frac {\pi }{4}}\mathrm {ber} (x)+\sum _{k\geq 0}(-1)^{k}{\frac {\psi (2k+2)}{[(2k+1)!]^{2}}}\left({\frac {x^{2}}{4}}\right)^{2k+1}}

and the asymptotic series

k e i ( x ) ∼ − π 2 x e − x 2 [ f 2 ( x ) sin ⁡ β + g 2 ( x ) cos ⁡ β ] , {\displaystyle \mathrm {kei} (x)\sim -{\sqrt {\frac {\pi }{2x}}}e^{-{\frac {x}{\sqrt {2}}}}[f_{2}(x)\sin \beta +g_{2}(x)\cos \beta ],}

where β, f2(x), and g2(x) are defined as for ker(x).

See also

  • Weisstein, Eric W. "Kelvin Functions." From MathWorld—A Wolfram Web Resource. [1]
  • GPL-licensed C/C++ source code for calculating Kelvin functions at codecogs.com: [2]