In number theory, Jordan's totient function, denoted as J k ( n ) {\displaystyle J_{k}(n)} , where k {\displaystyle k} is a positive integer, is a function of a positive integer, n {\displaystyle n} , that equals the number of k {\displaystyle k} -tuples of positive integers that are less than or equal to n {\displaystyle n} and that together with n {\displaystyle n} form a coprime set of k + 1 {\displaystyle k+1} integers.
Jordan's totient function is a generalization of Euler's totient function, which is the same as J 1 ( n ) {\displaystyle J_{1}(n)} . The function is named after Camille Jordan.
Definition
For each positive integer k {\displaystyle k} , Jordan's totient function J k {\displaystyle J_{k}} is multiplicative and may be evaluated as
J k ( n ) = n k ∏ p | n ( 1 − 1 p k ) {\displaystyle J_{k}(n)=n^{k}\prod _{p|n}\left(1-{\frac {1}{p^{k}}}\right)\,} , where p {\displaystyle p} ranges through the prime divisors of n {\displaystyle n} .Properties
- ∑ d | n J k ( d ) = n k . {\displaystyle \sum _{d|n}J_{k}(d)=n^{k}.\,}
- An average order of J k ( n ) {\displaystyle J_{k}(n)} is
- The Dedekind psi function is
- ∑ δ ∣ n δ s J r ( δ ) J s ( n δ ) = J r + s ( n ) {\displaystyle \sum _{\delta \mid n}\delta ^{s}J_{r}(\delta )J_{s}\left({\frac {n}{\delta }}\right)=J_{r+s}(n)} .2
Order of matrix groups
- The general linear group of matrices of order m {\displaystyle m} over Z / n {\displaystyle \mathbf {Z} /n} has order3
- The special linear group of matrices of order m {\displaystyle m} over Z / n {\displaystyle \mathbf {Z} /n} has order
- The symplectic group of matrices of order m {\displaystyle m} over Z / n {\displaystyle \mathbf {Z} /n} has order
The first two formulas were discovered by Jordan.
Examples
- Explicit lists in the OEIS are J2 in OEIS: A007434, J3 in OEIS: A059376, J4 in OEIS: A059377, J5 in OEIS: A059378, J6 up to J10 in OEIS: A069091 up to OEIS: A069095.
- Multiplicative functions defined by ratios are J2(n)/J1(n) in OEIS: A001615, J3(n)/J1(n) in OEIS: A160889, J4(n)/J1(n) in OEIS: A160891, J5(n)/J1(n) in OEIS: A160893, J6(n)/J1(n) in OEIS: A160895, J7(n)/J1(n) in OEIS: A160897, J8(n)/J1(n) in OEIS: A160908, J9(n)/J1(n) in OEIS: A160953, J10(n)/J1(n) in OEIS: A160957, J11(n)/J1(n) in OEIS: A160960.
- Examples of the ratios J2k(n)/Jk(n) are J4(n)/J2(n) in OEIS: A065958, J6(n)/J3(n) in OEIS: A065959, and J8(n)/J4(n) in OEIS: A065960.
Notes
- L. E. Dickson (1971) [1919]. History of the Theory of Numbers, Vol. I. Chelsea Publishing. p. 147. ISBN 0-8284-0086-5. JFM 47.0100.04.
- M. Ram Murty (2001). Problems in Analytic Number Theory. Graduate Texts in Mathematics. Vol. 206. Springer-Verlag. p. 11. ISBN 0-387-95143-1. Zbl 0971.11001.
- Sándor, Jozsef; Crstici, Borislav (2004). Handbook of number theory II. Dordrecht: Kluwer Academic. pp. 32–36. ISBN 1-4020-2546-7. Zbl 1079.11001.
External links
- Andrica, Dorin; Piticari, Mihai (2004). "On some extensions of Jordan's arithmetic functions". Acta Universitatis Apulensis. 7: 13–22. MR 2157944.
- Holden, Matthew; Orrison, Michael; Vrable, Michael. "Yet Another Generalization of Euler's Totient Function" (PDF). Archived from the original (PDF) on 2016-03-05. Retrieved 2011-12-21.