Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Invex function

In vector calculus, an invex function is a differentiable function f {\displaystyle f} from R n {\displaystyle \mathbb {R} ^{n}} to R {\displaystyle \mathbb {R} } for which there exists a vector valued function η {\displaystyle \eta } such that

f ( x ) − f ( u ) ≥ η ( x , u ) ⋅ ∇ f ( u ) , {\displaystyle f(x)-f(u)\geq \eta (x,u)\cdot \nabla f(u),\,}

for all x and u.

Invex functions were introduced by Hanson as a generalization of convex functions. Ben-Israel and Mond provided a simple proof that a function is invex if and only if every stationary point is a global minimum, a theorem first stated by Craven and Glover.

Hanson also showed that if the objective and the constraints of an optimization problem are invex with respect to the same function η ( x , u ) {\displaystyle \eta (x,u)} , then the Karush–Kuhn–Tucker conditions are sufficient for a global minimum.

We don't have any images related to Invex function yet.
We don't have any YouTube videos related to Invex function yet.
We don't have any PDF documents related to Invex function yet.
We don't have any Books related to Invex function yet.
We don't have any archived web articles related to Invex function yet.

Type I invex functions

A slight generalization of invex functions called Type I invex functions are the most general class of functions for which the Karush–Kuhn–Tucker conditions are necessary and sufficient for a global minimum.4 Consider a mathematical program of the form

min f ( x ) s.t. g ( x ) ≤ 0 {\displaystyle {\begin{array}{rl}\min &f(x)\\{\text{s.t.}}&g(x)\leq 0\end{array}}}

where f : R n → R {\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } and g : R n → R m {\displaystyle g:\mathbb {R} ^{n}\to \mathbb {R} ^{m}} are differentiable functions. Let F = { x ∈ R n | g ( x ) ≤ 0 } {\displaystyle F=\{x\in \mathbb {R} ^{n}\;|\;g(x)\leq 0\}} denote the feasible region of this program. The function f {\displaystyle f} is a Type I objective function and the function g {\displaystyle g} is a Type I constraint function at x 0 {\displaystyle x_{0}} with respect to η {\displaystyle \eta } if there exists a vector-valued function η {\displaystyle \eta } defined on F {\displaystyle F} such that

f ( x ) − f ( x 0 ) ≥ η ( x ) ⋅ ∇ f ( x 0 ) {\displaystyle f(x)-f(x_{0})\geq \eta (x)\cdot \nabla {f(x_{0})}}

and

− g ( x 0 ) ≥ η ( x ) ⋅ ∇ g ( x 0 ) {\displaystyle -g(x_{0})\geq \eta (x)\cdot \nabla {g(x_{0})}}

for all x ∈ F {\displaystyle x\in {F}} .5 Note that, unlike invexity, Type I invexity is defined relative to a point x 0 {\displaystyle x_{0}} .

Theorem (Theorem 2.1 in6): If f {\displaystyle f} and g {\displaystyle g} are Type I invex at a point x ∗ {\displaystyle x^{*}} with respect to η {\displaystyle \eta } , and the Karush–Kuhn–Tucker conditions are satisfied at x ∗ {\displaystyle x^{*}} , then x ∗ {\displaystyle x^{*}} is a global minimizer of f {\displaystyle f} over F {\displaystyle F} .

E-invex function

Let E {\displaystyle E} from R n {\displaystyle \mathbb {R} ^{n}} to R n {\displaystyle \mathbb {R} ^{n}} and f {\displaystyle f} from M {\displaystyle \mathbb {M} } to R {\displaystyle \mathbb {R} } be an E {\displaystyle E} -differentiable function on a nonempty open set M ⊂ R n {\displaystyle \mathbb {M} \subset \mathbb {R} ^{n}} . Then f {\displaystyle f} is said to be an E-invex function at u {\displaystyle u} if there exists a vector valued function η {\displaystyle \eta } such that

( f ∘ E ) ( x ) − ( f ∘ E ) ( u ) ≥ ∇ ( f ∘ E ) ( u ) ⋅ η ( E ( x ) , E ( u ) ) , {\displaystyle (f\circ E)(x)-(f\circ E)(u)\geq \nabla (f\circ E)(u)\cdot \eta (E(x),E(u)),\,}

for all x {\displaystyle x} and u {\displaystyle u} in M {\displaystyle \mathbb {M} } .

E-invex functions were introduced by Abdulaleem as a generalization of differentiable convex functions.7

E-type I Functions

Let E : R n → R n {\displaystyle E:\mathbb {R} ^{n}\to \mathbb {R} ^{n}} , and M ⊂ R n {\displaystyle M\subset \mathbb {R} ^{n}} be an open E-invex set. A vector-valued pair ( f , g ) {\displaystyle (f,g)} , where f {\displaystyle f} and g {\displaystyle g} represent objective and constraint functions respectively, is said to be E-type I with respect to a vector-valued function η : M × M → R n {\displaystyle \eta :M\times M\to \mathbb {R} ^{n}} , at u ∈ M {\displaystyle u\in M} , if the following inequalities hold for all x ∈ F E = { x ∈ R n | g ( E ( x ) ) ≤ 0 } {\displaystyle x\in F_{E}=\{x\in \mathbb {R} ^{n}\;|\;g(E(x))\leq 0\}} :

f i ( E ( x ) ) − f i ( E ( u ) ) ≥ ∇ f i ( E ( u ) ) ⋅ η ( E ( x ) , E ( u ) ) , {\displaystyle f_{i}(E(x))-f_{i}(E(u))\geq \nabla f_{i}(E(u))\cdot \eta (E(x),E(u)),}

− g j ( E ( u ) ) ≥ ∇ g j ( E ( u ) ) ⋅ η ( E ( x ) , E ( u ) ) . {\displaystyle -g_{j}(E(u))\geq \nabla g_{j}(E(u))\cdot \eta (E(x),E(u)).}

Remark 1.

If f {\displaystyle f} and g {\displaystyle g} are differentiable functions and E ( x ) = x {\displaystyle E(x)=x} ( E {\displaystyle E} is an identity map), then the definition of E-type I functions8 reduces to the definition of type I functions introduced by Rueda and Hanson.9

See also

Further reading

  • S. K. Mishra and G. Giorgi, Invexity and optimization, Nonconvex Optimization and Its Applications, Vol. 88, Springer-Verlag, Berlin, 2008.
  • S. K. Mishra, S.-Y. Wang and K. K. Lai, Generalized Convexity and Vector Optimization, Springer, New York, 2009.

References

  1. Hanson, Morgan A. (1981). "On sufficiency of the Kuhn-Tucker conditions". Journal of Mathematical Analysis and Applications. 80 (2): 545–550. doi:10.1016/0022-247X(81)90123-2. hdl:10338.dmlcz/141569. ISSN 0022-247X. /wiki/Doi_(identifier)

  2. Ben-Israel, A.; Mond, B. (1986). "What is invexity?". The ANZIAM Journal. 28 (1): 1–9. doi:10.1017/S0334270000005142. ISSN 1839-4078. https://doi.org/10.1017%2FS0334270000005142

  3. Craven, B. D.; Glover, B. M. (1985). "Invex functions and duality". Journal of the Australian Mathematical Society. 39 (1): 1–20. doi:10.1017/S1446788700022126. ISSN 0263-6115. https://doi.org/10.1017%2FS1446788700022126

  4. Hanson, Morgan A. (1999). "Invexity and the Kuhn–Tucker Theorem". Journal of Mathematical Analysis and Applications. 236 (2): 594–604. doi:10.1006/jmaa.1999.6484. ISSN 0022-247X. https://doi.org/10.1006%2Fjmaa.1999.6484

  5. Hanson, M. A.; Mond, B. (1987). "Necessary and sufficient conditions in constrained optimization". Mathematical Programming. 37 (1): 51–58. doi:10.1007/BF02591683. ISSN 1436-4646. S2CID 206818360. /wiki/Doi_(identifier)

  6. Hanson, Morgan A. (1999). "Invexity and the Kuhn–Tucker Theorem". Journal of Mathematical Analysis and Applications. 236 (2): 594–604. doi:10.1006/jmaa.1999.6484. ISSN 0022-247X. https://doi.org/10.1006%2Fjmaa.1999.6484

  7. Abdulaleem, Najeeb (2019). "E-invexity and generalized E-invexity in E-differentiable multiobjective programming". ITM Web of Conferences. 24 (1) 01002. doi:10.1051/itmconf/20192401002. https://doi.org/10.1051%2Fitmconf%2F20192401002

  8. Abdulaleem, Najeeb (2023). "Optimality and duality for $ E $-differentiable multiobjective programming problems involving $ E $-type Ⅰ functions". Journal of Industrial and Management Optimization. 19 (2): 1513. doi:10.3934/jimo.2022004. ISSN 1547-5816. https://www.aimsciences.org/article/doi/10.3934/jimo.2022004

  9. Rueda, Norma G; Hanson, Morgan A (1988-03-01). "Optimality criteria in mathematical programming involving generalized invexity". Journal of Mathematical Analysis and Applications. 130 (2): 375–385. doi:10.1016/0022-247X(88)90313-7. ISSN 0022-247X. https://linkinghub.elsevier.com/retrieve/pii/0022247X88903137