Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Incomplete Bessel functions

In mathematics, the incomplete Bessel functions are types of special functions which act as a type of extension from the complete-type of Bessel functions.

We don't have any images related to Incomplete Bessel functions yet.
We don't have any YouTube videos related to Incomplete Bessel functions yet.
We don't have any PDF documents related to Incomplete Bessel functions yet.
We don't have any Books related to Incomplete Bessel functions yet.
We don't have any archived web articles related to Incomplete Bessel functions yet.

Definition

The incomplete Bessel functions are defined as the same delay differential equations of the complete-type Bessel functions:

J v − 1 ( z , w ) − J v + 1 ( z , w ) = 2 ∂ ∂ z J v ( z , w ) {\displaystyle J_{v-1}(z,w)-J_{v+1}(z,w)=2{\dfrac {\partial }{\partial z}}J_{v}(z,w)} Y v − 1 ( z , w ) − Y v + 1 ( z , w ) = 2 ∂ ∂ z Y v ( z , w ) {\displaystyle Y_{v-1}(z,w)-Y_{v+1}(z,w)=2{\dfrac {\partial }{\partial z}}Y_{v}(z,w)} I v − 1 ( z , w ) + I v + 1 ( z , w ) = 2 ∂ ∂ z I v ( z , w ) {\displaystyle I_{v-1}(z,w)+I_{v+1}(z,w)=2{\dfrac {\partial }{\partial z}}I_{v}(z,w)} K v − 1 ( z , w ) + K v + 1 ( z , w ) = − 2 ∂ ∂ z K v ( z , w ) {\displaystyle K_{v-1}(z,w)+K_{v+1}(z,w)=-2{\dfrac {\partial }{\partial z}}K_{v}(z,w)} H v − 1 ( 1 ) ( z , w ) − H v + 1 ( 1 ) ( z , w ) = 2 ∂ ∂ z H v ( 1 ) ( z , w ) {\displaystyle H_{v-1}^{(1)}(z,w)-H_{v+1}^{(1)}(z,w)=2{\dfrac {\partial }{\partial z}}H_{v}^{(1)}(z,w)} H v − 1 ( 2 ) ( z , w ) − H v + 1 ( 2 ) ( z , w ) = 2 ∂ ∂ z H v ( 2 ) ( z , w ) {\displaystyle H_{v-1}^{(2)}(z,w)-H_{v+1}^{(2)}(z,w)=2{\dfrac {\partial }{\partial z}}H_{v}^{(2)}(z,w)}

And the following suitable extension forms of delay differential equations from that of the complete-type Bessel functions:

J v − 1 ( z , w ) + J v + 1 ( z , w ) = 2 v z J v ( z , w ) − 2 tanh ⁡ v w z ∂ ∂ w J v ( z , w ) {\displaystyle J_{v-1}(z,w)+J_{v+1}(z,w)={\dfrac {2v}{z}}J_{v}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}J_{v}(z,w)} Y v − 1 ( z , w ) + Y v + 1 ( z , w ) = 2 v z Y v ( z , w ) − 2 tanh ⁡ v w z ∂ ∂ w Y v ( z , w ) {\displaystyle Y_{v-1}(z,w)+Y_{v+1}(z,w)={\dfrac {2v}{z}}Y_{v}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}Y_{v}(z,w)} I v − 1 ( z , w ) − I v + 1 ( z , w ) = 2 v z I v ( z , w ) − 2 tanh ⁡ v w z ∂ ∂ w I v ( z , w ) {\displaystyle I_{v-1}(z,w)-I_{v+1}(z,w)={\dfrac {2v}{z}}I_{v}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}I_{v}(z,w)} K v − 1 ( z , w ) − K v + 1 ( z , w ) = − 2 v z K v ( z , w ) + 2 tanh ⁡ v w z ∂ ∂ w K v ( z , w ) {\displaystyle K_{v-1}(z,w)-K_{v+1}(z,w)=-{\dfrac {2v}{z}}K_{v}(z,w)+{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}K_{v}(z,w)} H v − 1 ( 1 ) ( z , w ) + H v + 1 ( 1 ) ( z , w ) = 2 v z H v ( 1 ) ( z , w ) − 2 tanh ⁡ v w z ∂ ∂ w H v ( 1 ) ( z , w ) {\displaystyle H_{v-1}^{(1)}(z,w)+H_{v+1}^{(1)}(z,w)={\dfrac {2v}{z}}H_{v}^{(1)}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}H_{v}^{(1)}(z,w)} H v − 1 ( 2 ) ( z , w ) + H v + 1 ( 2 ) ( z , w ) = 2 v z H v ( 2 ) ( z , w ) − 2 tanh ⁡ v w z ∂ ∂ w H v ( 2 ) ( z , w ) {\displaystyle H_{v-1}^{(2)}(z,w)+H_{v+1}^{(2)}(z,w)={\dfrac {2v}{z}}H_{v}^{(2)}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}H_{v}^{(2)}(z,w)}

Where the new parameter w {\displaystyle w} defines the integral bound of the upper-incomplete form and lower-incomplete form of the modified Bessel function of the second kind:1

K v ( z , w ) = ∫ w ∞ e − z cosh ⁡ t cosh ⁡ v t   d t {\displaystyle K_{v}(z,w)=\int _{w}^{\infty }e^{-z\cosh t}\cosh vt~dt} J v ( z , w ) = ∫ 0 w e − z cosh ⁡ t cosh ⁡ v t   d t {\displaystyle J_{v}(z,w)=\int _{0}^{w}e^{-z\cosh t}\cosh vt~dt}

Properties

J v ( z , w ) = J v ( z ) + e v π i 2 J ( i z , v , w ) − e − v π i 2 J ( − i z , v , w ) i π {\displaystyle J_{v}(z,w)=J_{v}(z)+{\dfrac {e^{\frac {v\pi i}{2}}J(iz,v,w)-e^{-{\frac {v\pi i}{2}}}J(-iz,v,w)}{i\pi }}} Y v ( z , w ) = Y v ( z ) + e v π i 2 J ( i z , v , w ) + e − v π i 2 J ( − i z , v , w ) π {\displaystyle Y_{v}(z,w)=Y_{v}(z)+{\dfrac {e^{\frac {v\pi i}{2}}J(iz,v,w)+e^{-{\frac {v\pi i}{2}}}J(-iz,v,w)}{\pi }}} I − v ( z , w ) = I v ( z , w ) {\displaystyle I_{-v}(z,w)=I_{v}(z,w)} for integer v {\displaystyle v} I − v ( z , w ) − I v ( z , w ) = I − v ( z ) − I v ( z ) − 2 sin ⁡ v π π J ( z , v , w ) {\displaystyle I_{-v}(z,w)-I_{v}(z,w)=I_{-v}(z)-I_{v}(z)-{\dfrac {2\sin v\pi }{\pi }}J(z,v,w)} I v ( z , w ) = I v ( z ) + J ( − z , v , w ) − e − v π i J ( z , v , w ) i π {\displaystyle I_{v}(z,w)=I_{v}(z)+{\dfrac {J(-z,v,w)-e^{-v\pi i}J(z,v,w)}{i\pi }}} I v ( z , w ) = e − v π i 2 J v ( i z , w ) {\displaystyle I_{v}(z,w)=e^{-{\frac {v\pi i}{2}}}J_{v}(iz,w)} K − v ( z , w ) = K v ( z , w ) {\displaystyle K_{-v}(z,w)=K_{v}(z,w)} K v ( z , w ) = π 2 I − v ( z , w ) − I v ( z , w ) sin ⁡ v π {\displaystyle K_{v}(z,w)={\dfrac {\pi }{2}}{\dfrac {I_{-v}(z,w)-I_{v}(z,w)}{\sin v\pi }}} for non-integer v {\displaystyle v} H v ( 1 ) ( z , w ) = J v ( z , w ) + i Y v ( z , w ) {\displaystyle H_{v}^{(1)}(z,w)=J_{v}(z,w)+iY_{v}(z,w)} H v ( 2 ) ( z , w ) = J v ( z , w ) − i Y v ( z , w ) {\displaystyle H_{v}^{(2)}(z,w)=J_{v}(z,w)-iY_{v}(z,w)} H − v ( 1 ) ( z , w ) = e v π i H v ( 1 ) ( z , w ) {\displaystyle H_{-v}^{(1)}(z,w)=e^{v\pi i}H_{v}^{(1)}(z,w)} H − v ( 2 ) ( z , w ) = e − v π i H v ( 2 ) ( z , w ) {\displaystyle H_{-v}^{(2)}(z,w)=e^{-v\pi i}H_{v}^{(2)}(z,w)} H v ( 1 ) ( z , w ) = J − v ( z , w ) − e − v π i J v ( z , w ) i sin ⁡ v π = Y − v ( z , w ) − e − v π i Y v ( z , w ) sin ⁡ v π {\displaystyle H_{v}^{(1)}(z,w)={\dfrac {J_{-v}(z,w)-e^{-v\pi i}J_{v}(z,w)}{i\sin v\pi }}={\dfrac {Y_{-v}(z,w)-e^{-v\pi i}Y_{v}(z,w)}{\sin v\pi }}} for non-integer v {\displaystyle v} H v ( 2 ) ( z , w ) = e v π i J v ( z , w ) − J − v ( z , w ) i sin ⁡ v π = Y − v ( z , w ) − e v π i Y v ( z , w ) sin ⁡ v π {\displaystyle H_{v}^{(2)}(z,w)={\dfrac {e^{v\pi i}J_{v}(z,w)-J_{-v}(z,w)}{i\sin v\pi }}={\dfrac {Y_{-v}(z,w)-e^{v\pi i}Y_{v}(z,w)}{\sin v\pi }}} for non-integer v {\displaystyle v}

Differential equations

K v ( z , w ) {\displaystyle K_{v}(z,w)} satisfies the inhomogeneous Bessel's differential equation

z 2 d 2 y d z 2 + z d y d z − ( x 2 + v 2 ) y = ( v sinh ⁡ v w + z cosh ⁡ v w sinh ⁡ w ) e − z cosh ⁡ w {\displaystyle z^{2}{\dfrac {d^{2}y}{dz^{2}}}+z{\dfrac {dy}{dz}}-(x^{2}+v^{2})y=(v\sinh vw+z\cosh vw\sinh w)e^{-z\cosh w}}

Both J v ( z , w ) {\displaystyle J_{v}(z,w)} , Y v ( z , w ) {\displaystyle Y_{v}(z,w)} , H v ( 1 ) ( z , w ) {\displaystyle H_{v}^{(1)}(z,w)} and H v ( 2 ) ( z , w ) {\displaystyle H_{v}^{(2)}(z,w)} satisfy the partial differential equation

z 2 ∂ 2 y ∂ z 2 + z ∂ y ∂ z + ( z 2 − v 2 ) y − ∂ 2 y ∂ w 2 + 2 v tanh ⁡ v w ∂ y ∂ w = 0 {\displaystyle z^{2}{\dfrac {\partial ^{2}y}{\partial z^{2}}}+z{\dfrac {\partial y}{\partial z}}+(z^{2}-v^{2})y-{\dfrac {\partial ^{2}y}{\partial w^{2}}}+2v\tanh vw{\dfrac {\partial y}{\partial w}}=0}

Both I v ( z , w ) {\displaystyle I_{v}(z,w)} and K v ( z , w ) {\displaystyle K_{v}(z,w)} satisfy the partial differential equation

z 2 ∂ 2 y ∂ z 2 + z ∂ y ∂ z − ( z 2 + v 2 ) y − ∂ 2 y ∂ w 2 + 2 v tanh ⁡ v w ∂ y ∂ w = 0 {\displaystyle z^{2}{\dfrac {\partial ^{2}y}{\partial z^{2}}}+z{\dfrac {\partial y}{\partial z}}-(z^{2}+v^{2})y-{\dfrac {\partial ^{2}y}{\partial w^{2}}}+2v\tanh vw{\dfrac {\partial y}{\partial w}}=0}

Integral representations

Base on the preliminary definitions above, one would derive directly the following integral forms of J v ( z , w ) {\displaystyle J_{v}(z,w)} , Y v ( z , w ) {\displaystyle Y_{v}(z,w)} :

J v ( z , w ) = J v ( z ) + 1 π i ( ∫ 0 w e v π i 2 − i z cosh ⁡ t cosh ⁡ v t   d t − ∫ 0 w e i z cosh ⁡ t − v π i 2 cosh ⁡ v t   d t ) = J v ( z ) + 1 π i ( ∫ 0 w cos ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t − i ∫ 0 w sin ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t − ∫ 0 w cos ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t − i ∫ 0 w sin ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t ) = J v ( z ) + 1 π i ( − 2 i ∫ 0 w sin ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t ) = J v ( z ) − 2 π ∫ 0 w sin ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t {\displaystyle {\begin{aligned}J_{v}(z,w)&=J_{v}(z)+{\dfrac {1}{\pi i}}\left(\int _{0}^{w}e^{{\frac {v\pi i}{2}}-iz\cosh t}\cosh vt~dt-\int _{0}^{w}e^{iz\cosh t-{\frac {v\pi i}{2}}}\cosh vt~dt\right)\\&=J_{v}(z)+{\dfrac {1}{\pi i}}\left(\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt-i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right.\\&\quad \quad \quad \quad \quad \quad \left.-\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt-i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right)\\&=J_{v}(z)+{\dfrac {1}{\pi i}}\left(-2i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right)\\&=J_{v}(z)-{\dfrac {2}{\pi }}\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\end{aligned}}} Y v ( z , w ) = Y v ( z ) + 1 π ( ∫ 0 w e v π i 2 − i z cosh ⁡ t cosh ⁡ v t   d t + ∫ 0 w e i z cosh ⁡ t − v π i 2 cosh ⁡ v t   d t ) = Y v ( z ) + 1 π ( ∫ 0 w cos ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t − i ∫ 0 w sin ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t + ∫ 0 w cos ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t + i ∫ 0 w sin ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t ) = Y v ( z ) + 2 π ∫ 0 w cos ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t {\displaystyle {\begin{aligned}Y_{v}(z,w)&=Y_{v}(z)+{\dfrac {1}{\pi }}\left(\int _{0}^{w}e^{{\frac {v\pi i}{2}}-iz\cosh t}\cosh vt~dt+\int _{0}^{w}e^{iz\cosh t-{\frac {v\pi i}{2}}}\cosh vt~dt\right)\\&=Y_{v}(z)+{\dfrac {1}{\pi }}\left(\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt-i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right.\\&\quad \quad \quad \quad \quad \quad \left.+\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt+i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right)\\&=Y_{v}(z)+{\dfrac {2}{\pi }}\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\end{aligned}}}

With the Mehler–Sonine integral expressions of J v ( z ) = 2 π ∫ 0 ∞ sin ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t {\displaystyle J_{v}(z)={\dfrac {2}{\pi }}\int _{0}^{\infty }\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} and Y v ( z ) = − 2 π ∫ 0 ∞ cos ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t {\displaystyle Y_{v}(z)=-{\dfrac {2}{\pi }}\int _{0}^{\infty }\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} mentioned in Digital Library of Mathematical Functions,2

we can further simplify to J v ( z , w ) = 2 π ∫ w ∞ sin ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t {\displaystyle J_{v}(z,w)={\dfrac {2}{\pi }}\int _{w}^{\infty }\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} and Y v ( z , w ) = − 2 π ∫ w ∞ cos ⁡ ( z cosh ⁡ t − v π 2 ) cosh ⁡ v t   d t {\displaystyle Y_{v}(z,w)=-{\dfrac {2}{\pi }}\int _{w}^{\infty }\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} , but the issue is not quite good since the convergence range will reduce greatly to | v | < 1 {\displaystyle |v|<1} .

References

  1. Jones, D. S. (February 2007). "Incomplete Bessel functions. I". Proceedings of the Edinburgh Mathematical Society. 50 (1): 173–183. doi:10.1017/S0013091505000490. https://doi.org/10.1017%2FS0013091505000490

  2. Paris, R. B. (2010), "Bessel Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5