Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Graph algebra
Way of giving a directed graph an algebraic structure

In mathematics, especially in the fields of universal algebra and graph theory, a graph algebra is a way of giving a directed graph an algebraic structure. It was introduced by McNulty and Shallon, and has seen many uses in the field of universal algebra since then.

We don't have any images related to Graph algebra yet.
We don't have any YouTube videos related to Graph algebra yet.
We don't have any PDF documents related to Graph algebra yet.
We don't have any Books related to Graph algebra yet.
We don't have any archived web articles related to Graph algebra yet.

Definition

Let D = (V, E) be a directed graph, and 0 an element not in V. The graph algebra associated with D has underlying set V ∪ { 0 } {\displaystyle V\cup \{0\}} , and is equipped with a multiplication defined by the rules

  • xy = x if x , y ∈ V {\displaystyle x,y\in V} and ( x , y ) ∈ E {\displaystyle (x,y)\in E} ,
  • xy = 0 if x , y ∈ V ∪ { 0 } {\displaystyle x,y\in V\cup \{0\}} and ( x , y ) ∉ E {\displaystyle (x,y)\notin E} .

Applications

This notion has made it possible to use the methods of graph theory in universal algebra and several other areas of discrete mathematics and computer science. Graph algebras have been used, for example, in constructions concerning dualities,2 equational theories,3 flatness,4 groupoid rings,5 topologies,6 varieties,7 finite-state machines,89 tree languages and tree automata,10 etc.

See also

Citations

Works cited

Further reading

References

  1. McNulty & Shallon 1983, pp. 206–231. - McNulty, George F.; Shallon, Caroline R. (1983). "Inherently nonfinitely based finite algebras". In Freese, Ralph S.; Garcia, Octavio C. (eds.). Universal algebra and lattice theory (Puebla, 1982). Lecture Notes in Math. Vol. 1004. Berlin, New York City: Springer-Verlag. pp. 206–231. doi:10.1007/BFb0063439. hdl:10338.dmlcz/102157. ISBN 978-354012329-3. MR 0716184 – via Internet Archive. https://archive.org/details/universalalgebra0000unse

  2. Davey et al. 2000, pp. 145–172. - Davey, Brian A.; Idziak, Pawel M.; Lampe, William A.; McNulty, George F. (2000). "Dualizability and graph algebras". Discrete Mathematics. 214 (1): 145–172. doi:10.1016/S0012-365X(99)00225-3. ISSN 0012-365X. MR 1743633. https://doi.org/10.1016%2FS0012-365X%2899%2900225-3

  3. Pöschel 1989, pp. 273–282. - Pöschel, R. (1989). "The equational logic for graph algebras". Z. Math. Logik Grundlag. Math. 35 (3): 273–282. doi:10.1002/malq.19890350311. MR 1000970. https://doi.org/10.1002%2Fmalq.19890350311

  4. Delić 2001, pp. 453–469. - Delić, Dejan (2001). "Finite bases for flat graph algebras". Journal of Algebra. 246 (1): 453–469. doi:10.1006/jabr.2001.8947. ISSN 0021-8693. MR 1872631. https://doi.org/10.1006%2Fjabr.2001.8947

  5. Lee 1991, pp. 117–121. - Lee, S.-M. (1991). "Simple graph algebras and simple rings". Southeast Asian Bull. Math. 15 (2): 117–121. ISSN 0129-2021. MR 1145431. https://search.worldcat.org/issn/0129-2021

  6. Lee 1988, pp. 147–156. - Lee, S.-M. (1988). "Graph algebras which admit only discrete topologies". Congr. Numer. 64: 147–156. ISSN 1736-6046. MR 0988675. https://search.worldcat.org/issn/1736-6046

  7. Oates-Williams 1984, pp. 175–177. - Oates-Williams, Sheila (1984). "On the variety generated by Murskiĭ's algebra". Algebra Universalis. 18 (2): 175–177. doi:10.1007/BF01198526. ISSN 0002-5240. MR 0743465. S2CID 121598599. https://doi.org/10.1007%2FBF01198526

  8. Kelarev, Miller & Sokratova 2005, pp. 46–54. - Kelarev, A.V.; Miller, M.; Sokratova, O.V. (2005). "Languages recognized by two-sided automata of graphs". Proc. Estonian Akademy of Science. 54 (1): 46–54. ISSN 1736-6046. MR 2126358. https://search.worldcat.org/issn/1736-6046

  9. Kelarev & Sokratova 2003, pp. 31–43. - Kelarev, A.V.; Sokratova, O.V. (2003). "On congruences of automata defined by directed graphs" (PDF). Theoretical Computer Science. 301 (1–3): 31–43. doi:10.1016/S0304-3975(02)00544-3. ISSN 0304-3975. MR 1975219. https://eprints.utas.edu.au/157/1/congruences.pdf

  10. Kelarev & Sokratova 2001, pp. 305–311. - Kelarev, A.V.; Sokratova, O.V. (2001). "Directed graphs and syntactic algebras of tree languages". J. Automata, Languages & Combinatorics. 6 (3): 305–311. ISSN 1430-189X. MR 1879773. https://search.worldcat.org/issn/1430-189X