Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of gadolinium

Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.

Thirty-three radioisotopes have been characterized, with the most stable being alpha-decaying 152Gd (naturally occurring) with a half-life of 1.08×1014 years, and 150Gd with a half-life of 1.79×106 years. All of the remaining radioactive isotopes have half-lives less than 100 years, the majority of these having half-lives less than 24.6 seconds. Gadolinium isotopes have 10 metastable isomers, with the most stable being 143mGd (t1/2 = 110 seconds), 145mGd (t1/2 = 85 seconds) and 141mGd (t1/2 = 24.5 seconds).

The primary decay mode at atomic weights lower than the most abundant stable isotope, 158Gd, is electron capture, and the primary mode at higher atomic weights is beta decay. The primary decay products for isotopes lighter than 158Gd are isotopes of europium and the primary products of heavier isotopes are isotopes of terbium.

We don't have any images related to Isotopes of gadolinium yet.
We don't have any YouTube videos related to Isotopes of gadolinium yet.
We don't have any PDF documents related to Isotopes of gadolinium yet.
We don't have any Books related to Isotopes of gadolinium yet.
We don't have any archived web articles related to Isotopes of gadolinium yet.

List of isotopes

Nuclide2ZNIsotopic mass (Da)345Half-life678Decaymode910Daughterisotope1112Spin andparity131415Natural abundance (mole fraction)
Excitation energy16Normal proportion17Range of variation
135Gd6471134.95250(43)#1.1(2) sβ+ (98%)135Eu(5/2+)
β+, p (98%)134Sm
136Gd6472135.94730(32)#1# s [>200 ns]β+?136Eu0+
β+, p?135Sm
137Gd6473136.94502(32)#2.2(2) sβ+137Eu(7/2)+#
β+, p?136Sm
138Gd6474137.94025(22)#4.7(9) sβ+138Eu0+
138mGd2232.6(11) keV6.2(0.2) μsIT138Gd(8−)
139Gd6475138.93813(21)#5.7(3) sβ+139Eu9/2−#
β+, p?138Sm
139mGd18250(150)# keV4.8(9) sβ+139Eu1/2+#
β+, p?138Sm
140Gd6476139.933674(30)15.8(4) sβ+ (67(8)%)140Eu0+
EC (33(8)%)
141Gd6477140.932126(21)14(4) sβ+ (99.97%)141Eu(1/2+)
β+, p (0.03%)140Sm
141mGd377.76(9) keV24.5(5) sβ+ (89%)141Eu(11/2−)
IT (11%)141Gd
142Gd6478141.928116(30)70.2(6) sEC (52(5)%)142Eu0+
β+ (48(5)%)
143Gd6479142.92675(22)39(2) sβ+143Eu1/2+
β+, p?142Sm
β+, α?139Pm
143mGd152.6(5) keV110.0(14) sβ+143Eu11/2−
β+, p?142Sm
β+, α?139Pm
144Gd6480143.922963(30)4.47(6) minβ+144Eu0+
144mGd3433.1(5) keV145(30) nsIT144Gd(10+)
145Gd6481144.921710(21)23.0(4) minβ+145Eu1/2+
145mGd749.1(2) keV85(3) sIT (94.3%)145Gd11/2−
β+ (5.7%)145Eu
146Gd6482145.9183185(44)48.27(10) dEC146Eu0+
147Gd6483146.9191010(20)38.06(12) hβ+147Eu7/2−
147mGd8587.8(5) keV510(20) nsIT147Gd49/2+
148Gd6484147.9181214(16)86.9(39) y19α20144Sm0+
149Gd6485148.9193477(36)9.28(10) dβ+149Eu7/2−
α (4.3×10−4%)145Sm
150Gd6486149.9186639(65)1.79(8)×106 yα21146Sm0+
151Gd6487150.9203549(32)123.9(10) dEC151Eu7/2−
α (1.1×10−6%)147Sm
152Gd226488151.9197984(11)1.08(8)×1014 yα23148Sm0+0.0020(1)
153Gd6489152.9217569(11)240.6(7) dEC153Eu3/2−
153m1Gd95.1737(8) keV3.5(4) μsIT153Gd9/2+
153m2Gd171.188(4) keV76.0(14) μsIT153Gd(11/2−)
154Gd6490153.9208730(11)Observationally Stable240+0.0218(2)
155Gd256491154.9226294(11)Observationally Stable263/2−0.1480(9)
155mGd121.10(19) keV31.97(27) msIT155Gd11/2−
156Gd276492155.9221301(11)Stable0+0.2047(3)
156mGd2137.60(5) keV1.3(1) μsIT156Gd7-
157Gd286493156.9239674(10)Stable3/2−0.1565(4)
157m1Gd63.916(5) keV460(40) nsIT157Gd5/2+
157m2Gd426.539(23) keV18.5(23) μsIT157Gd11/2−
158Gd296494157.9241112(10)Stable0+0.2484(8)
159Gd306495158.9263958(11)18.479(4) hβ−159Tb3/2−
160Gd316496159.9270612(12)Observationally Stable320+0.2186(3)
161Gd6497160.9296763(16)3.646(3) minβ−161Tb5/2−
162Gd6498161.9309918(43)8.4(2) minβ−162Tb0+
163Gd6499162.93409664(86)68(3) sβ−163Tb7/2+
163mGd138.22(20) keV23.5(10) sIT?163Gd1/2−
β−163Tb
164Gd64100163.9359162(11)45(3) sβ−164Tb0+
164mGd1095.8(4) keV589(18) nsIT164Gd(4−)
165Gd64101164.9393171(14)11.6(10) sβ−165Tb1/2−#
166Gd64102165.9416304(17)5.1(8) sβ−166Tb0+
166mGd1601.5(11) keV950(60) nsIT166Gd(6−)
167Gd64103166.9454900(56)4.2(3) sβ−167Tb5/2−#
168Gd64104167.94831(32)#3.03(16) sβ−168Tb0+
169Gd64105168.95288(43)#750(210) msβ−169Tb7/2−#
β−, n? (<0.7%)33168Tb
170Gd64106169.95615(54)#675+94−75 ms34β−170Tb0+
β−, n? (<3%)35169Tb
171Gd64107170.96113(54)#392+145−136 ms36β−171Tb9/2+#
β−, n? (<10%)37170Tb
172Gd64108171.96461(32)#163+113−99 ms38β−172Tb0+#
β−, n? (<50%)39171Tb
This table header & footer:
  • view

Gadolinium-148

With a half-life of 86.9±3.9 year via alpha decay alone,40 gadolinium-148 would be ideal for radioisotope thermoelectric generators. However, gadolinium-148 cannot be economically synthesized in sufficient quantities to power a RTG.41

Gadolinium-153

Gadolinium-153 has a half-life of 240.4±10 d and emits gamma radiation with strong peaks at 41 keV and 102 keV. It is used as a gamma ray source for X-ray absorptiometry and fluorescence, for bone density gauges for osteoporosis screening, and for radiometric profiling in the Lixiscope portable x-ray imaging system, also known as the Lixi Profiler. In nuclear medicine, it serves to calibrate the equipment needed like single-photon emission computed tomography systems (SPECT) to make x-rays. It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient. This isotope is produced in a nuclear reactor from europium or enriched gadolinium.42 It can also detect the loss of calcium in the hip and back bones, allowing the ability to diagnose osteoporosis.43

References

  1. F. A. Danevich; et al. (2001). "Quest for double beta decay of 160Gd and Ce isotopes". Nuclear Physics A. 694 (1–2): 375–391. arXiv:nucl-ex/0011020. Bibcode:2001NuPhA.694..375D. doi:10.1016/S0375-9474(01)00983-6. S2CID 11874988. /wiki/Nuclear_Physics_A

  2. mGd – Excited nuclear isomer. /wiki/Nuclear_isomer

  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  4. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  5. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. Bold half-life – nearly stable, half-life longer than age of universe. /wiki/Age_of_universe

  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  10. Modes of decay: EC:Electron captureIT:Isomeric transition /wiki/Electron_capture

  11. Bold italics symbol as daughter – Daughter product is nearly stable.

  12. Bold symbol as daughter – Daughter product is stable.

  13. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  14. ( ) spin value – Indicates spin with weak assignment arguments.

  15. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  16. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  17. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  18. Order of ground state and isomer is uncertain.

  19. Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. 194. Elsevier BV: 110708. doi:10.1016/j.apradiso.2023.110708. ISSN 0969-8043. /wiki/Doi_(identifier)

  20. Theorized to also undergo β+β+ decay to 148Sm

  21. Theorized to also undergo β+β+ decay to 150Sm

  22. primordial radionuclide /wiki/Primordial_nuclide

  23. Theorized to also undergo β+β+ decay to 152Sm

  24. Believed to undergo α decay to 150Sm

  25. Fission product /wiki/Fission_product

  26. Believed to undergo α decay to 151Sm

  27. Fission product /wiki/Fission_product

  28. Fission product /wiki/Fission_product

  29. Fission product /wiki/Fission_product

  30. Fission product /wiki/Fission_product

  31. Fission product /wiki/Fission_product

  32. Believed to undergo β−β− decay to 160Dy with a half-life over 3.1×1019 years /wiki/Half-life

  33. Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253. https://doi.org/10.3847%2F1538-4357%2Fac80fc

  34. Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253. https://doi.org/10.3847%2F1538-4357%2Fac80fc

  35. Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253. https://doi.org/10.3847%2F1538-4357%2Fac80fc

  36. Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253. https://doi.org/10.3847%2F1538-4357%2Fac80fc

  37. Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253. https://doi.org/10.3847%2F1538-4357%2Fac80fc

  38. Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253. https://doi.org/10.3847%2F1538-4357%2Fac80fc

  39. Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253. https://doi.org/10.3847%2F1538-4357%2Fac80fc

  40. Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. 194. Elsevier BV: 110708. doi:10.1016/j.apradiso.2023.110708. ISSN 0969-8043. /wiki/Doi_(identifier)

  41. Council, National Research; Sciences, Division on Engineering Physical; Board, Aeronautics Space Engineering; Board, Space Studies; Committee, Radioisotope Power Systems (2009). Radioisotope Power Systems: An Imperative for Maintaining U.S. Leadership in Space Exploration. CiteSeerX 10.1.1.367.4042. doi:10.17226/12653. ISBN 978-0-309-13857-4. 978-0-309-13857-4

  42. "PNNL: Isotope Sciences Program – Gadolinium-153". pnl.gov. Archived from the original on 2009-05-27. https://web.archive.org/web/20090527014921/http://radioisotopes.pnl.gov/gadolinium.stm

  43. "Gadolinium". BCIT Chemistry Resource Center. British Columbia Institute of Technology. Archived from the original on 23 August 2011. Retrieved 30 March 2011. https://web.archive.org/web/20110823085358/http://nobel.scas.bcit.ca/resource/ptable/gd.htm