Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Filtration (probability theory)
Model of information available at a given point of a random process

In the theory of stochastic processes, a subdiscipline of probability theory, filtrations are totally ordered collections of subsets that are used to model the information that is available at a given point and therefore play an important role in the formalization of random (stochastic) processes.

We don't have any images related to Filtration (probability theory) yet.
We don't have any YouTube videos related to Filtration (probability theory) yet.
We don't have any PDF documents related to Filtration (probability theory) yet.
We don't have any Books related to Filtration (probability theory) yet.
We don't have any archived web articles related to Filtration (probability theory) yet.

Definition

Let ( Ω , A , P ) {\displaystyle (\Omega ,{\mathcal {A}},P)} be a probability space and let I {\displaystyle I} be an index set with a total order ≤ {\displaystyle \leq } (often N {\displaystyle \mathbb {N} } , R + {\displaystyle \mathbb {R} ^{+}} , or a subset of R + {\displaystyle \mathbb {R} ^{+}} ).

For every i ∈ I {\displaystyle i\in I} let F i {\displaystyle {\mathcal {F}}_{i}} be a sub-σ-algebra of A {\displaystyle {\mathcal {A}}} . Then

F := ( F i ) i ∈ I {\displaystyle \mathbb {F} :=({\mathcal {F}}_{i})_{i\in I}}

is called a filtration, if F k ⊆ F ℓ {\displaystyle {\mathcal {F}}_{k}\subseteq {\mathcal {F}}_{\ell }} for all k ≤ ℓ {\displaystyle k\leq \ell } . So filtrations are families of σ-algebras that are ordered non-decreasingly.1 If F {\displaystyle \mathbb {F} } is a filtration, then ( Ω , A , F , P ) {\displaystyle (\Omega ,{\mathcal {A}},\mathbb {F} ,P)} is called a filtered probability space.

Example

Let ( X n ) n ∈ N {\displaystyle (X_{n})_{n\in \mathbb {N} }} be a stochastic process on the probability space ( Ω , A , P ) {\displaystyle (\Omega ,{\mathcal {A}},P)} . Let σ ( X k ∣ k ≤ n ) {\displaystyle \sigma (X_{k}\mid k\leq n)} denote the σ-algebra generated by the random variables X 1 , X 2 , … , X n {\displaystyle X_{1},X_{2},\dots ,X_{n}} . Then

F n := σ ( X k ∣ k ≤ n ) {\displaystyle {\mathcal {F}}_{n}:=\sigma (X_{k}\mid k\leq n)}

is a σ-algebra and F = ( F n ) n ∈ N {\displaystyle \mathbb {F} =({\mathcal {F}}_{n})_{n\in \mathbb {N} }} is a filtration.

F {\displaystyle \mathbb {F} } really is a filtration, since by definition all F n {\displaystyle {\mathcal {F}}_{n}} are σ-algebras and

σ ( X k ∣ k ≤ n ) ⊆ σ ( X k ∣ k ≤ n + 1 ) . {\displaystyle \sigma (X_{k}\mid k\leq n)\subseteq \sigma (X_{k}\mid k\leq n+1).}

This is known as the natural filtration of A {\displaystyle {\mathcal {A}}} with respect to ( X n ) n ∈ N {\displaystyle (X_{n})_{n\in \mathbb {N} }} .

Types of filtrations

Right-continuous filtration

If F = ( F i ) i ∈ I {\displaystyle \mathbb {F} =({\mathcal {F}}_{i})_{i\in I}} is a filtration, then the corresponding right-continuous filtration is defined as2

F + := ( F i + ) i ∈ I , {\displaystyle \mathbb {F} ^{+}:=({\mathcal {F}}_{i}^{+})_{i\in I},}

with

F i + := ⋂ z > i F z . {\displaystyle {\mathcal {F}}_{i}^{+}:=\bigcap _{z>i}{\mathcal {F}}_{z}.}

The filtration F {\displaystyle \mathbb {F} } itself is called right-continuous if F + = F {\displaystyle \mathbb {F} ^{+}=\mathbb {F} } .3

Complete filtration

Let ( Ω , F , P ) {\displaystyle (\Omega ,{\mathcal {F}},P)} be a probability space, and let

N P := { A ⊆ Ω ∣ A ⊆ B  for some  B ∈ F  with  P ( B ) = 0 } {\displaystyle {\mathcal {N}}_{P}:=\{A\subseteq \Omega \mid A\subseteq B{\text{ for some }}B\in {\mathcal {F}}{\text{ with }}P(B)=0\}}

be the set of all sets that are contained within a P {\displaystyle P} -null set.

A filtration F = ( F i ) i ∈ I {\displaystyle \mathbb {F} =({\mathcal {F}}_{i})_{i\in I}} is called a complete filtration, if every F i {\displaystyle {\mathcal {F}}_{i}} contains N P {\displaystyle {\mathcal {N}}_{P}} . This implies ( Ω , F i , P ) {\displaystyle (\Omega ,{\mathcal {F}}_{i},P)} is a complete measure space for every i ∈ I . {\displaystyle i\in I.} (The converse is not necessarily true.)

Augmented filtration

A filtration is called an augmented filtration if it is complete and right continuous. For every filtration F {\displaystyle \mathbb {F} } there exists a smallest augmented filtration F ~ {\displaystyle {\tilde {\mathbb {F} }}} refining F {\displaystyle \mathbb {F} } .

If a filtration is an augmented filtration, it is said to satisfy the usual hypotheses or the usual conditions.4

See also

References

  1. Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 191. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6. 978-1-84800-047-6

  2. Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 350-351. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3. 978-3-319-41596-3

  3. Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 462. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6. 978-1-84800-047-6

  4. Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 462. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6. 978-1-84800-047-6