A distortion function in mathematics and statistics, for example, g : [ 0 , 1 ] → [ 0 , 1 ] {\displaystyle g:[0,1]\to [0,1]} , is a non-decreasing function such that g ( 0 ) = 0 {\displaystyle g(0)=0} and g ( 1 ) = 1 {\displaystyle g(1)=1} . The dual distortion function is g ~ ( x ) = 1 − g ( 1 − x ) {\displaystyle {\tilde {g}}(x)=1-g(1-x)} . Distortion functions are used to define distortion risk measures.
Given a probability space ( Ω , F , P ) {\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} )} , then for any random variable X {\displaystyle X} and any distortion function g {\displaystyle g} we can define a new probability measure Q {\displaystyle \mathbb {Q} } such that for any A ∈ F {\displaystyle A\in {\mathcal {F}}} it follows that
Q ( A ) = g ( P ( X ∈ A ) ) . {\displaystyle \mathbb {Q} (A)=g(\mathbb {P} (X\in A)).} 4References
Balbás, A.; Garrido, J.; Mayoral, S. (2008). "Properties of Distortion Risk Measures". Methodology and Computing in Applied Probability. 11 (3): 385. doi:10.1007/s11009-008-9089-z. hdl:10016/14071. S2CID 53327887. /wiki/Doi_(identifier) ↩
Julia L. Wirch; Mary R. Hardy. "Distortion Risk Measures: Coherence and Stochastic Dominance" (PDF). Archived from the original (PDF) on July 5, 2016. Retrieved March 10, 2012. https://web.archive.org/web/20160705041252/http://pascal.iseg.utl.pt/~cemapre/ime2002/main_page/papers/JuliaWirch.pdf ↩
Julia L. Wirch; Mary R. Hardy. "Distortion Risk Measures: Coherence and Stochastic Dominance" (PDF). Archived from the original (PDF) on July 5, 2016. Retrieved March 10, 2012. https://web.archive.org/web/20160705041252/http://pascal.iseg.utl.pt/~cemapre/ime2002/main_page/papers/JuliaWirch.pdf ↩
Balbás, A.; Garrido, J.; Mayoral, S. (2008). "Properties of Distortion Risk Measures". Methodology and Computing in Applied Probability. 11 (3): 385. doi:10.1007/s11009-008-9089-z. hdl:10016/14071. S2CID 53327887. /wiki/Doi_(identifier) ↩