Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Discrete spline interpolation
The discrete analog of ordinary spline interpolation

In the mathematical field of numerical analysis, discrete spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a discrete spline. A discrete spline is a piecewise polynomial such that its central differences are continuous at the knots whereas a spline is a piecewise polynomial such that its derivatives are continuous at the knots. Discrete cubic splines are discrete splines where the central differences of orders 0, 1, and 2 are required to be continuous.

Discrete splines were introduced by Mangasarin and Schumaker in 1971 as solutions of certain minimization problems involving differences.

We don't have any images related to Discrete spline interpolation yet.
We don't have any YouTube videos related to Discrete spline interpolation yet.
We don't have any PDF documents related to Discrete spline interpolation yet.
We don't have any Books related to Discrete spline interpolation yet.
We don't have any archived web articles related to Discrete spline interpolation yet.

Discrete cubic splines

Let x1, x2, . . ., xn-1 be an increasing sequence of real numbers. Let g(x) be a piecewise polynomial defined by

g ( x ) = { g 1 ( x ) x < x 1 g i ( x ) x i − 1 ≤ x < x i  for  i = 2 , 3 , … , n − 1 g n ( x ) x ≥ x n − 1 {\displaystyle g(x)={\begin{cases}g_{1}(x)&x<x_{1}\\g_{i}(x)&x_{i-1}\leq x<x_{i}{\text{ for }}i=2,3,\ldots ,n-1\\g_{n}(x)&x\geq x_{n-1}\end{cases}}}

where g1(x), . . ., gn(x) are polynomials of degree 3. Let h > 0. If

( g i + 1 − g i ) ( x i + j h ) = 0  for  j = − 1 , 0 , 1  and  i = 1 , 2 , … , n − 1 {\displaystyle (g_{i+1}-g_{i})(x_{i}+jh)=0{\text{ for }}j=-1,0,1{\text{ and }}i=1,2,\ldots ,n-1}

then g(x) is called a discrete cubic spline.3

Alternative formulation 1

The conditions defining a discrete cubic spline are equivalent to the following:

g i + 1 ( x i − h ) = g i ( x i − h ) {\displaystyle g_{i+1}(x_{i}-h)=g_{i}(x_{i}-h)} g i + 1 ( x i ) = g i ( x i ) {\displaystyle g_{i+1}(x_{i})=g_{i}(x_{i})} g i + 1 ( x i + h ) = g i ( x i + h ) {\displaystyle g_{i+1}(x_{i}+h)=g_{i}(x_{i}+h)}

Alternative formulation 2

The central differences of orders 0, 1, and 2 of a function f(x) are defined as follows:

D ( 0 ) f ( x ) = f ( x ) {\displaystyle D^{(0)}f(x)=f(x)} D ( 1 ) f ( x ) = f ( x + h ) − f ( x − h ) 2 h {\displaystyle D^{(1)}f(x)={\frac {f(x+h)-f(x-h)}{2h}}} D ( 2 ) f ( x ) = f ( x + h ) − 2 f ( x ) + f ( x − h ) h 2 {\displaystyle D^{(2)}f(x)={\frac {f(x+h)-2f(x)+f(x-h)}{h^{2}}}}

The conditions defining a discrete cubic spline are also equivalent to4

D ( j ) g i + 1 ( x i ) = D ( j ) g i ( x i )  for  j = 0 , 1 , 2  and  i = 1 , 2 , … , n − 1. {\displaystyle D^{(j)}g_{i+1}(x_{i})=D^{(j)}g_{i}(x_{i}){\text{ for }}j=0,1,2{\text{ and }}i=1,2,\ldots ,n-1.}

This states that the central differences D ( j ) g ( x ) {\displaystyle D^{(j)}g(x)} are continuous at xi.

Example

Let x1 = 1 and x2 = 2 so that n = 3. The following function defines a discrete cubic spline:5

g ( x ) = { x 3 x < 1 x 3 − 2 ( x − 1 ) ( ( x − 1 ) 2 − h 2 ) 1 ≤ x < 2 x 3 − 2 ( x − 1 ) ( ( x − 1 ) 2 − h 2 ) + ( x − 2 ) ( ( x − 2 ) 2 − h 2 ) x ≥ 2 {\displaystyle g(x)={\begin{cases}x^{3}&x<1\\x^{3}-2(x-1)((x-1)^{2}-h^{2})&1\leq x<2\\x^{3}-2(x-1)((x-1)^{2}-h^{2})+(x-2)((x-2)^{2}-h^{2})&x\geq 2\end{cases}}}

Discrete cubic spline interpolant

Let x0 < x1 and xn > xn-1 and f(x) be a function defined in the closed interval [x0 - h, xn + h]. Then there is a unique cubic discrete spline g(x) satisfying the following conditions:

g ( x i ) = f ( x i )  for  i = 0 , 1 , … , n . {\displaystyle g(x_{i})=f(x_{i}){\text{ for }}i=0,1,\ldots ,n.} D ( 1 ) g 1 ( x 0 ) = D ( 1 ) f ( x 0 ) . {\displaystyle D^{(1)}g_{1}(x_{0})=D^{(1)}f(x_{0}).} D ( 1 ) g n ( x n ) = D ( 1 ) f ( x n ) . {\displaystyle D^{(1)}g_{n}(x_{n})=D^{(1)}f(x_{n}).}

This unique discrete cubic spline is the discrete spline interpolant to f(x) in the interval [x0 - h, xn + h]. This interpolant agrees with the values of f(x) at x0, x1, . . ., xn.

Applications

  • Discrete cubic splines were originally introduced as solutions of certain minimization problems.67
  • They have applications in computing nonlinear splines.89
  • They are used to obtain approximate solution of a second order boundary value problem.10
  • Discrete interpolatory splines have been used to construct biorthogonal wavelets.11

References

  1. Tom Lyche (1979). "Discrete Cubic Spline Interpolation". BIT. 16 (3): 281–290. doi:10.1007/bf01932270. S2CID 122300608. /wiki/Doi_(identifier)

  2. Mangasarian, O. L.; Schumaker, L. L. (1971). "Discrete splines via mathematical programming". SIAM J. Control. 9 (2): 174–183. doi:10.1137/0309015. /wiki/Doi_(identifier)

  3. Tom Lyche (1979). "Discrete Cubic Spline Interpolation". BIT. 16 (3): 281–290. doi:10.1007/bf01932270. S2CID 122300608. /wiki/Doi_(identifier)

  4. Tom Lyche (1979). "Discrete Cubic Spline Interpolation". BIT. 16 (3): 281–290. doi:10.1007/bf01932270. S2CID 122300608. /wiki/Doi_(identifier)

  5. Tom Lyche (1979). "Discrete Cubic Spline Interpolation". BIT. 16 (3): 281–290. doi:10.1007/bf01932270. S2CID 122300608. /wiki/Doi_(identifier)

  6. Tom Lyche (1979). "Discrete Cubic Spline Interpolation". BIT. 16 (3): 281–290. doi:10.1007/bf01932270. S2CID 122300608. /wiki/Doi_(identifier)

  7. Mangasarian, O. L.; Schumaker, L. L. (1971). "Discrete splines via mathematical programming". SIAM J. Control. 9 (2): 174–183. doi:10.1137/0309015. /wiki/Doi_(identifier)

  8. Tom Lyche (1979). "Discrete Cubic Spline Interpolation". BIT. 16 (3): 281–290. doi:10.1007/bf01932270. S2CID 122300608. /wiki/Doi_(identifier)

  9. Michael A. Malcolm (April 1977). "On the computation of nonlinear spline functions". SIAM Journal on Numerical Analysis. 14 (2): 254–282. Bibcode:1977SJNA...14..254M. doi:10.1137/0714017. /wiki/Bibcode_(identifier)

  10. Fengmin Chen, Wong, P.J.Y. (Dec 2012). "Solving second order boundary value problems by discrete cubic splines". Control Automation Robotics & Vision (ICARCV), 2012 12th International Conference: 1800–1805.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Template:Cite_journal

  11. Averbuch, A.Z., Pevnyi, A.B., Zheludev, V.A. (Nov 2001). "Biorthogonal Butterworth wavelets derived from discrete interpolatory splines". IEEE Transactions on Signal Processing. 49 (11): 2682–2692. Bibcode:2001ITSP...49.2682A. CiteSeerX 10.1.1.332.7428. doi:10.1109/78.960415.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Bibcode_(identifier)