Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Dickman function
Mathematical function

In analytic number theory, the Dickman function or Dickman–de Bruijn function ρ is a special function used to estimate the proportion of smooth numbers up to a given bound. It was first studied by actuary Karl Dickman, who defined it in his only mathematical publication, which is not easily available, and later studied by the Dutch mathematician Nicolaas Govert de Bruijn.

Related Image Collections Add Image
We don't have any YouTube videos related to Dickman function yet.
We don't have any PDF documents related to Dickman function yet.
We don't have any Books related to Dickman function yet.
We don't have any archived web articles related to Dickman function yet.

Definition

The Dickman–de Bruijn function ρ ( u ) {\displaystyle \rho (u)} is a continuous function that satisfies the delay differential equation

u ρ ′ ( u ) + ρ ( u − 1 ) = 0 {\displaystyle u\rho '(u)+\rho (u-1)=0\,}

with initial conditions ρ ( u ) = 1 {\displaystyle \rho (u)=1} for 0 ≤ u ≤ 1.

Properties

Dickman proved that, when a {\displaystyle a} is fixed, we have

Ψ ( x , x 1 / a ) ∼ x ρ ( a ) {\displaystyle \Psi (x,x^{1/a})\sim x\rho (a)\,}

where Ψ ( x , y ) {\displaystyle \Psi (x,y)} is the number of y-smooth (or y-friable) integers below x.

Ramaswami later gave a rigorous proof that for fixed a, Ψ ( x , x 1 / a ) {\displaystyle \Psi (x,x^{1/a})} was asymptotic to x ρ ( a ) {\displaystyle x\rho (a)} , with the error bound

Ψ ( x , x 1 / a ) = x ρ ( a ) + O ( x / log ⁡ x ) {\displaystyle \Psi (x,x^{1/a})=x\rho (a)+O(x/\log x)}

in big O notation.5

Applications

The main purpose of the Dickman–de Bruijn function is to estimate the frequency of smooth numbers at a given size. This can be used to optimize various number-theoretical algorithms such as P–1 factoring and can be useful of its own right.

It can be shown that6

Ψ ( x , y ) = x u O ( − u ) {\displaystyle \Psi (x,y)=xu^{O(-u)}}

which is related to the estimate ρ ( u ) ≈ u − u {\displaystyle \rho (u)\approx u^{-u}} below.

The Golomb–Dickman constant has an alternate definition in terms of the Dickman–de Bruijn function.

Estimation

A first approximation might be ρ ( u ) ≈ u − u . {\displaystyle \rho (u)\approx u^{-u}.\,} A better estimate is7

ρ ( u ) ∼ 1 ξ 2 π u ⋅ exp ⁡ ( − u ξ + Ei ⁡ ( ξ ) ) {\displaystyle \rho (u)\sim {\frac {1}{\xi {\sqrt {2\pi u}}}}\cdot \exp(-u\xi +\operatorname {Ei} (\xi ))}

where Ei is the exponential integral and ξ is the positive root of

e ξ − 1 = u ξ . {\displaystyle e^{\xi }-1=u\xi .\,}

A simple upper bound is ρ ( x ) ≤ 1 / x ! . {\displaystyle \rho (x)\leq 1/x!.}

u {\displaystyle u} ρ ( u ) {\displaystyle \rho (u)}
11
23.0685282×10−1
34.8608388×10−2
44.9109256×10−3
53.5472470×10−4
61.9649696×10−5
78.7456700×10−7
83.2320693×10−8
91.0162483×10−9
102.7701718×10−11

Computation

For each interval [n − 1, n] with n an integer, there is an analytic function ρ n {\displaystyle \rho _{n}} such that ρ n ( u ) = ρ ( u ) {\displaystyle \rho _{n}(u)=\rho (u)} . For 0 ≤ u ≤ 1, ρ ( u ) = 1 {\displaystyle \rho (u)=1} . For 1 ≤ u ≤ 2, ρ ( u ) = 1 − log ⁡ u {\displaystyle \rho (u)=1-\log u} . For 2 ≤ u ≤ 3,

ρ ( u ) = 1 − ( 1 − log ⁡ ( u − 1 ) ) log ⁡ ( u ) + Li 2 ⁡ ( 1 − u ) + π 2 12 . {\displaystyle \rho (u)=1-(1-\log(u-1))\log(u)+\operatorname {Li} _{2}(1-u)+{\frac {\pi ^{2}}{12}}.}

with Li2 the dilogarithm. Other ρ n {\displaystyle \rho _{n}} can be calculated using infinite series.8

An alternate method is computing lower and upper bounds with the trapezoidal rule;9 a mesh of progressively finer sizes allows for arbitrary accuracy. For high precision calculations (hundreds of digits), a recursive series expansion about the midpoints of the intervals is superior.10

Extension

Friedlander defines a two-dimensional analog σ ( u , v ) {\displaystyle \sigma (u,v)} of ρ ( u ) {\displaystyle \rho (u)} .11 This function is used to estimate a function Ψ ( x , y , z ) {\displaystyle \Psi (x,y,z)} similar to de Bruijn's, but counting the number of y-smooth integers with at most one prime factor greater than z. Then

Ψ ( x , x 1 / a , x 1 / b ) ∼ x σ ( b , a ) . {\displaystyle \Psi (x,x^{1/a},x^{1/b})\sim x\sigma (b,a).\,}

See also

Further reading

References

  1. Dickman, K. (1930). "On the frequency of numbers containing prime factors of a certain relative magnitude". Arkiv för Matematik, Astronomi och Fysik. 22A (10): 1–14. Bibcode:1930ArMAF..22A..10D. /wiki/Arkiv_f%C3%B6r_Matematik,_Astronomi_och_Fysik

  2. Various (2012–2018). "nt.number theory - Reference request: Dickman, On the frequency of numbers containing prime factors". MathOverflow. Discussion: an unsuccessful search for a source of Dickman's paper, and suggestions on several others on the topic. https://mathoverflow.net/questions/89362/reference-request-dickman-on-the-frequency-of-numbers-containing-prime-factors

  3. de Bruijn, N. G. (1951). "On the number of positive integers ≤ x and free of prime factors > y" (PDF). Indagationes Mathematicae. 13: 50–60. http://alexandria.tue.nl/repository/freearticles/597499.pdf

  4. de Bruijn, N. G. (1966). "On the number of positive integers ≤ x and free of prime factors > y, II" (PDF). Indagationes Mathematicae. 28: 239–247. http://alexandria.tue.nl/repository/freearticles/597534.pdf

  5. Ramaswami, V. (1949). "On the number of positive integers less than x {\displaystyle x} and free of prime divisors greater than xc" (PDF). Bulletin of the American Mathematical Society. 55 (12): 1122–1127. doi:10.1090/s0002-9904-1949-09337-0. MR 0031958. https://www.ams.org/bull/1949-55-12/S0002-9904-1949-09337-0/S0002-9904-1949-09337-0.pdf

  6. Hildebrand, A.; Tenenbaum, G. (1993). "Integers without large prime factors" (PDF). Journal de théorie des nombres de Bordeaux. 5 (2): 411–484. doi:10.5802/jtnb.101. http://archive.numdam.org/article/JTNB_1993__5_2_411_0.pdf

  7. van de Lune, J.; Wattel, E. (1969). "On the Numerical Solution of a Differential-Difference Equation Arising in Analytic Number Theory". Mathematics of Computation. 23 (106): 417–421. doi:10.1090/S0025-5718-1969-0247789-3. https://doi.org/10.1090%2FS0025-5718-1969-0247789-3

  8. Bach, Eric; Peralta, René (1996). "Asymptotic Semismoothness Probabilities" (PDF). Mathematics of Computation. 65 (216): 1701–1715. Bibcode:1996MaCom..65.1701B. doi:10.1090/S0025-5718-96-00775-2. http://cr.yp.to/bib/1996/bach-semismooth.pdf

  9. van de Lune, J.; Wattel, E. (1969). "On the Numerical Solution of a Differential-Difference Equation Arising in Analytic Number Theory". Mathematics of Computation. 23 (106): 417–421. doi:10.1090/S0025-5718-1969-0247789-3. https://doi.org/10.1090%2FS0025-5718-1969-0247789-3

  10. Marsaglia, George; Zaman, Arif; Marsaglia, John C. W. (1989). "Numerical Solution of Some Classical Differential-Difference Equations". Mathematics of Computation. 53 (187): 191–201. doi:10.1090/S0025-5718-1989-0969490-3. https://doi.org/10.1090%2FS0025-5718-1989-0969490-3

  11. Friedlander, John B. (1976). "Integers free from large and small primes". Proc. London Math. Soc. 33 (3): 565–576. doi:10.1112/plms/s3-33.3.565. /wiki/Doi_(identifier)