Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Continuous poset
Partially ordered set

In order theory, a continuous poset is a partially ordered set in which every element is the directed supremum of elements approximating it.

We don't have any images related to Continuous poset yet.
We don't have any YouTube videos related to Continuous poset yet.
We don't have any PDF documents related to Continuous poset yet.
We don't have any Books related to Continuous poset yet.
We don't have any archived web articles related to Continuous poset yet.

Definitions

Let a , b ∈ P {\displaystyle a,b\in P} be two elements of a preordered set ( P , ≲ ) {\displaystyle (P,\lesssim )} . Then we say that a {\displaystyle a} approximates b {\displaystyle b} , or that a {\displaystyle a} is way-below b {\displaystyle b} , if the following two equivalent conditions are satisfied.

  • For any directed set D ⊆ P {\displaystyle D\subseteq P} such that b ≲ sup D {\displaystyle b\lesssim \sup D} , there is a d ∈ D {\displaystyle d\in D} such that a ≲ d {\displaystyle a\lesssim d} .
  • For any ideal I ⊆ P {\displaystyle I\subseteq P} such that b ≲ sup I {\displaystyle b\lesssim \sup I} , a ∈ I {\displaystyle a\in I} .

If a {\displaystyle a} approximates b {\displaystyle b} , we write a ≪ b {\displaystyle a\ll b} . The approximation relation ≪ {\displaystyle \ll } is a transitive relation that is weaker than the original order, also antisymmetric if P {\displaystyle P} is a partially ordered set, but not necessarily a preorder. It is a preorder if and only if ( P , ≲ ) {\displaystyle (P,\lesssim )} satisfies the ascending chain condition.1: p.52, Examples I-1.3, (4) 

For any a ∈ P {\displaystyle a\in P} , let

⇑ ⁡ a = { b ∈ L ∣ a ≪ b } {\displaystyle \mathop {\Uparrow } a=\{b\in L\mid a\ll b\}} ⇓ ⁡ a = { b ∈ L ∣ b ≪ a } {\displaystyle \mathop {\Downarrow } a=\{b\in L\mid b\ll a\}}

Then ⇑ ⁡ a {\displaystyle \mathop {\Uparrow } a} is an upper set, and ⇓ ⁡ a {\displaystyle \mathop {\Downarrow } a} a lower set. If P {\displaystyle P} is an upper-semilattice, ⇓ ⁡ a {\displaystyle \mathop {\Downarrow } a} is a directed set (that is, b , c ≪ a {\displaystyle b,c\ll a} implies b ∨ c ≪ a {\displaystyle b\vee c\ll a} ), and therefore an ideal.

A preordered set ( P , ≲ ) {\displaystyle (P,\lesssim )} is called a continuous preordered set if for any a ∈ P {\displaystyle a\in P} , the subset ⇓ ⁡ a {\displaystyle \mathop {\Downarrow } a} is directed and a = sup ⇓ ⁡ a {\displaystyle a=\sup \mathop {\Downarrow } a} .

Properties

The interpolation property

For any two elements a , b ∈ P {\displaystyle a,b\in P} of a continuous preordered set ( P , ≲ ) {\displaystyle (P,\lesssim )} , a ≪ b {\displaystyle a\ll b} if and only if for any directed set D ⊆ P {\displaystyle D\subseteq P} such that b ≲ sup D {\displaystyle b\lesssim \sup D} , there is a d ∈ D {\displaystyle d\in D} such that a ≪ d {\displaystyle a\ll d} . From this follows the interpolation property of the continuous preordered set ( P , ≲ ) {\displaystyle (P,\lesssim )} : for any a , b ∈ P {\displaystyle a,b\in P} such that a ≪ b {\displaystyle a\ll b} there is a c ∈ P {\displaystyle c\in P} such that a ≪ c ≪ b {\displaystyle a\ll c\ll b} .

Continuous dcpos

For any two elements a , b ∈ P {\displaystyle a,b\in P} of a continuous dcpo ( P , ≤ ) {\displaystyle (P,\leq )} , the following two conditions are equivalent.2: p.61, Proposition I-1.19(i) 

  • a ≪ b {\displaystyle a\ll b} and a ≠ b {\displaystyle a\neq b} .
  • For any directed set D ⊆ P {\displaystyle D\subseteq P} such that b ≤ sup D {\displaystyle b\leq \sup D} , there is a d ∈ D {\displaystyle d\in D} such that a ≪ d {\displaystyle a\ll d} and a ≠ d {\displaystyle a\neq d} .

Using this it can be shown that the following stronger interpolation property is true for continuous dcpos. For any a , b ∈ P {\displaystyle a,b\in P} such that a ≪ b {\displaystyle a\ll b} and a ≠ b {\displaystyle a\neq b} , there is a c ∈ P {\displaystyle c\in P} such that a ≪ c ≪ b {\displaystyle a\ll c\ll b} and a ≠ c {\displaystyle a\neq c} .3: p.61, Proposition I-1.19(ii) 

For a dcpo ( P , ≤ ) {\displaystyle (P,\leq )} , the following conditions are equivalent.4: Theorem I-1.10 

  • P {\displaystyle P} is continuous.
  • The supremum map sup : Ideal ⁡ ( P ) → P {\displaystyle \sup \colon \operatorname {Ideal} (P)\to P} from the partially ordered set of ideals of P {\displaystyle P} to P {\displaystyle P} has a left adjoint.

In this case, the actual left adjoint is

⇓ : P → Ideal ⁡ ( P ) {\displaystyle {\Downarrow }\colon P\to \operatorname {Ideal} (P)} ⇓ ⊣ sup {\displaystyle {\mathord {\Downarrow }}\dashv \sup }

Continuous complete lattices

For any two elements a , b ∈ L {\displaystyle a,b\in L} of a complete lattice L {\displaystyle L} , a ≪ b {\displaystyle a\ll b} if and only if for any subset A ⊆ L {\displaystyle A\subseteq L} such that b ≤ sup A {\displaystyle b\leq \sup A} , there is a finite subset F ⊆ A {\displaystyle F\subseteq A} such that a ≤ sup F {\displaystyle a\leq \sup F} .

Let L {\displaystyle L} be a complete lattice. Then the following conditions are equivalent.

  • L {\displaystyle L} is continuous.
  • The supremum map sup : Ideal ⁡ ( L ) → L {\displaystyle \sup \colon \operatorname {Ideal} (L)\to L} from the complete lattice of ideals of L {\displaystyle L} to L {\displaystyle L} preserves arbitrary infima.
  • For any family D {\displaystyle {\mathcal {D}}} of directed sets of L {\displaystyle L} , inf D ∈ D sup D = sup f ∈ ∏ D inf D ∈ D f ( D ) {\displaystyle \textstyle \inf _{D\in {\mathcal {D}}}\sup D=\sup _{f\in \prod {\mathcal {D}}}\inf _{D\in {\mathcal {D}}}f(D)} .
  • L {\displaystyle L} is isomorphic to the image of a Scott-continuous idempotent map r : { 0 , 1 } κ → { 0 , 1 } κ {\displaystyle r\colon \{0,1\}^{\kappa }\to \{0,1\}^{\kappa }} on the direct power of arbitrarily many two-point lattices { 0 , 1 } {\displaystyle \{0,1\}} .5: p.56, Theorem 44 

A continuous complete lattice is often called a continuous lattice.

Examples

Lattices of open sets

For a topological space X {\displaystyle X} , the following conditions are equivalent.

References

  1. Gierz, Gerhard; Hofmann, Karl; Keimel, Klaus; Lawson, Jimmie; Mislove, Michael; Scott, Dana S. (2003). Continuous lattices and domains. Encyclopedia of Mathematics and Its Applications. Vol. 93. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511542725. ISBN 978-0-521-80338-0. MR 1975381. Zbl 1088.06001. 978-0-521-80338-0

  2. Gierz, Gerhard; Hofmann, Karl; Keimel, Klaus; Lawson, Jimmie; Mislove, Michael; Scott, Dana S. (2003). Continuous lattices and domains. Encyclopedia of Mathematics and Its Applications. Vol. 93. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511542725. ISBN 978-0-521-80338-0. MR 1975381. Zbl 1088.06001. 978-0-521-80338-0

  3. Gierz, Gerhard; Hofmann, Karl; Keimel, Klaus; Lawson, Jimmie; Mislove, Michael; Scott, Dana S. (2003). Continuous lattices and domains. Encyclopedia of Mathematics and Its Applications. Vol. 93. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511542725. ISBN 978-0-521-80338-0. MR 1975381. Zbl 1088.06001. 978-0-521-80338-0

  4. Gierz, Gerhard; Hofmann, Karl; Keimel, Klaus; Lawson, Jimmie; Mislove, Michael; Scott, Dana S. (2003). Continuous lattices and domains. Encyclopedia of Mathematics and Its Applications. Vol. 93. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511542725. ISBN 978-0-521-80338-0. MR 1975381. Zbl 1088.06001. 978-0-521-80338-0

  5. Grätzer, George (2011). Lattice Theory: Foundation. Basel: Springer. doi:10.1007/978-3-0348-0018-1. ISBN 978-3-0348-0017-4. LCCN 2011921250. MR 2768581. Zbl 1233.06001. 978-3-0348-0017-4

  6. Gierz, Gerhard; Hofmann, Karl; Keimel, Klaus; Lawson, Jimmie; Mislove, Michael; Scott, Dana S. (2003). Continuous lattices and domains. Encyclopedia of Mathematics and Its Applications. Vol. 93. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511542725. ISBN 978-0-521-80338-0. MR 1975381. Zbl 1088.06001. 978-0-521-80338-0