Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of cobalt

Naturally occurring cobalt, Co, consists of a single stable isotope, 59Co (thus, cobalt is a mononuclidic element). Twenty-eight radioisotopes have been characterized; the most stable are 60Co with a half-life of 5.2714 years, 57Co (271.811 days), 56Co (77.236 days), and 58Co (70.844 days). All other isotopes have half-lives of less than 18 hours and most of these have half-lives of less than 1 second. This element also has 19 meta states, of which the most stable is 58m1Co with a half-life of 8.853 h.

The isotopes of cobalt range in atomic weight from 50Co to 78Co. The main decay mode for isotopes with atomic mass less than that of the stable isotope, 59Co, is electron capture and the main mode of decay for those of greater than 59 atomic mass units is beta decay. The main decay products before 59Co are iron isotopes and the main products after are nickel isotopes.

Radioisotopes can be produced by various nuclear reactions. For example, 57Co is produced by cyclotron irradiation of iron. The main reaction is the (d,n) reaction 56Fe + 2H → n + 57Co.

List of isotopes

Nuclide2ZNIsotopic mass (Da)345Half-life67Decaymode89Daughterisotope10Spin andparity111213Isotopicabundance
Excitation energy14
50Co272349.98112(14)38.8(2) msβ+, p (70.5%)49Mn(6+)
β+ (29.5%)50Fe
β+, 2p?48Cr
51Co272450.970647(52)68.8(19) msβ+ (96.2%)51Fe7/2−
β+, p (<3.8%)50Mn
52Co272551.9631302(57)111.7(21) msβ+52Fe6+
β+, p?51Mn
52mCo376(9) keV102(5) msβ+52Fe2+
IT?52Co
β+, p?51Mn
53Co272652.9542033(19)244.6(28) msβ+53Fe7/2−#
53mCo3174.3(9) keV250(10) msβ+? (~98.5%)53Fe(19/2−)
p (~1.5%)52Fe
54Co272753.94845908(38)193.27(6) msβ+54Fe0+
54mCo197.57(10) keV1.48(2) minβ+54Fe7+
55Co272854.94199642(43)17.53(3) hβ+55Fe7/2−
56Co272955.93983803(51)77.236(26) dβ+56Fe4+
57Co273056.93628982(55)271.811(32) dEC57Fe7/2−
58Co273157.9357513(12)70.844(20) dEC (85.21%)58Fe2+
β+ (14.79%)58Fe
58m1Co24.95(6) keV8.853(23) hIT58Co5+
EC (0.00120%)58Fe
58m2Co53.15(7) keV10.5(3) μsIT58Co4+
59Co273258.93319352(43)Stable7/2−1.0000
60Co273359.93381554(43)5.2714(6) yβ−60Ni5+
60mCo58.59(1) keV10.467(6) minIT (99.75%)60Co2+
β− (0.25%)60Ni
61Co273460.93247603(90)1.649(5) hβ−61Ni7/2−
62Co273561.934058(20)1.54(10) minβ−62Ni(2)+
62mCo22(5) keV13.86(9) minβ− (>99.5%)62Ni(5)+
IT (<0.5%)62Co
63Co273662.933600(20)26.9(4) sβ−63Ni7/2−
64Co273763.935810(21)300(30) msβ−64Ni1+
64mCo107(20) keV300# msβ−?64Ni5+#
IT?64Co
65Co273864.9364621(22)1.16(3) sβ−65Ni(7/2)−
66Co273965.939443(15)194(17) msβ−66Ni(1+)
β−, n?65Ni
66m1Co175.1(3) keV824(22) nsIT66Co(3+)
66m2Co642(5) keV>100 μsIT66Co(8−)
67Co274066.9406096(69)329(28) msβ−67Ni(7/2−)
β−, n?66Ni
67mCo491.55(11) keV496(33) msIT (>80%)67Co(1/2−)
β−67Ni
68Co274167.9445594(41)200(20) msβ−68Ni(7−)
β−, n?67Ni
68m1Co15150(150)# keV1.6(3) sβ−68Ni(2−)
β−, n (>2.6%)67Ni
68m2Co195(150)# keV101(10) nsIT68Co(1)
69Co274268.945909(92)180(20) msβ−69Ni(7/2−)
β−, n?68Ni
69mCo16170(90) keV750(250) msβ−69Ni1/2−#
70Co274369.950053(12)508(7) msβ−70Ni(1+)
β−, n?69Ni
β−, 2n?68Ni
70mCo17200(200)# keV112(7) msβ−70Ni(7−)
IT?70Co
β−, n?69Ni
β−, 2n?68Ni
71Co274470.95237(50)80(3) msβ− (97%)71Ni(7/2−)
β−, n (3%)70Ni
72Co274571.95674(32)#51.5(3) msβ− (<96%)72Ni(6−,7−)
β−, n (>4%)71Ni
β−, 2n?70Ni
72mCo18200(200)# keV47.8(5) msβ−72Ni(0+,1+)
73Co274672.95924(32)#42.0(8) msβ− (94%)73Ni(7/2−)
β−, n (6%)72Ni
β−, 2n?71Ni
74Co274773.96399(43)#31.3(13) msβ− (82%)74Ni7−#
β−, n (18%)73Ni
β−, 2n?72Ni
75Co274874.96719(43)#26.5(12) msβ− (>84%)75Ni7/2−#
β−, n (<16%)74Ni
β−, 2n?73Ni
76Co274975.97245(54)#23(6) msβ−76Ni(8−)
β−, n?75Ni
β−, 2n?74Ni
76m1Co19100(100)# keV16(4) msβ−76Ni(1−)
76m2Co740(100)# keV2.99(27) μsIT76Co(3+)
77Co275076.97648(64)#15(6) msβ−77Ni7/2−#
β−, n?76Ni
β−, 2n?75Ni
β−, 3n?74Ni
78Co275177.983 55(75)#11# ms[>410 ns]β−?78Ni
This table header & footer:
  • view

Stellar nucleosynthesis of cobalt-56

One of the terminal nuclear reactions in stars prior to supernova produces 56Ni. Following its production, 56Ni decays to 56Co, and then 56Co subsequently decays to 56Fe. These decay reactions power the luminosity displayed in light decay curves. Both the light decay and radioactive decay curves are expected to be exponential. Therefore, the light decay curve should give an indication of the nuclear reactions powering it. This has been confirmed by observation of bolometric light decay curves for SN 1987A. Between 600 and 800 days after SN1987A occurred, the bolometric light curve decreased at an exponential rate with half-life values from τ1/2 = 68.6 days to τ1/2 = 69.6 days.20 The rate at which the luminosity decreased closely matched the exponential decay of 56Co with a half-life of τ1/2 = 77.233 days.

Use of cobalt radioisotopes in medicine

Cobalt-57 (57Co or Co-57) is used in medical tests; it is used as a radiolabel for vitamin B12 uptake. It is useful for the Schilling test.21

Cobalt-60 (60Co or Co-60) is used in radiotherapy. It produces two gamma rays with energies of 1.17 MeV and 1.33 MeV. The 60Co source is about 2 cm in diameter and as a result produces a geometric penumbra, making the edge of the radiation field fuzzy. The metal has the unfortunate habit of producing fine dust, causing problems with radiation protection. The 60Co source is useful for about 5 years but even after this point is still very radioactive, and so cobalt machines have fallen from favor in the Western world where Linacs are common.

Industrial uses for radioactive isotopes

Cobalt-60 (60Co) is useful as a gamma ray source because it can be produced in predictable quantities, and for its high radioactivity simply by exposing natural cobalt to neutrons in a reactor.22 The uses for industrial cobalt include:

57Co is used as a source in Mössbauer spectroscopy of iron-containing samples. Electron capture by 57Co forms an excited state of the 57Fe nucleus, which in turn decays to the ground state with the emission of a gamma ray. Measurement of the gamma-ray spectrum provides information about the chemical state of the iron atom in the sample.

References

  1. Diaz, L. E. "Cobalt-57: Production". JPNM Physics Isotopes. University of Harvard. Archived from the original on 2000-10-31. Retrieved 2013-11-15. https://web.archive.org/web/20001031195522/http://www.med.harvard.edu/JPNM/physics/isotopes/Co/Co57/prod.html

  2. mCo – Excited nuclear isomer. /wiki/Nuclear_isomer

  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  4. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  5. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  10. Bold symbol as daughter – Daughter product is stable.

  11. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  12. ( ) spin value – Indicates spin with weak assignment arguments.

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. Order of ground state and isomer is uncertain.

  16. Order of ground state and isomer is uncertain.

  17. Order of ground state and isomer is uncertain.

  18. Order of ground state and isomer is uncertain.

  19. Order of ground state and isomer is uncertain.

  20. Bouchet, P.; Danziger, I.J.; Lucy, L.B. (September 1991). "Bolometric Light Curve of SN 1987A: Results from Day 616 to 1316 After Outburst". The Astronomical Journal. 102 (3): 1135–1146. doi:10.1086/115939 – via Astrophysics Data System. https://doi.org/10.1086/115939

  21. Diaz, L. E. "Cobalt-57: Uses". JPNM Physics Isotopes. University of Harvard. Archived from the original on 2011-06-11. Retrieved 2010-09-13. https://web.archive.org/web/20110611162615/http://www.med.harvard.edu/JPNM/physics/isotopes/Co/Co57/uses.html

  22. "Properties of Cobalt-60". Radioactive Isotopes. Retrieved 2022-12-09. http://radioactiveisotopes.weebly.com/properties-of-cobalt-60.html

  23. "Beneficial Uses of Cobalt-60". INTERNATIONAL IRRADIATION ASSOCIATION. Retrieved 2022-12-09. https://iiaglobal.com/publications/beneficial-uses-of-cobalt-60-2/