In alchemy, chrysopoeia refers to the artificial production of gold, typically by transmuting base metals like lead. A related concept, argyropoeia, involves making silver from metals such as copper. This goal persisted throughout alchemy’s history, from Zosimus of Panopolis to Robert Boyle. The term appears in the Chrysopoeia of Cleopatra, a key work linked to Cleopatra the Alchemist featuring the symbol ouroboros and themes tied to Hermeticism. In modern times, gold’s artificial synthesis was achieved at the Lawrence Berkeley National Laboratory and later confirmed by teams at CERN.
Other images from the Chrysopoeia of Cleopatra
Images from Chrysopeoia of CleopatraModern synthesis of gold atoms
Further information: Synthesis of precious metals
It is possible to synthesize gold in particle accelerators or nuclear reactors, although the production cost is estimated to be a trillion times the market price of gold. Since there is only one stable gold isotope, 197Au, nuclear reactions must create this isotope in order to produce usable gold.10
Gold was synthesized from mercury by neutron bombardment in 1941, but the isotopes of gold produced were all radioactive.11 In 1980, Glenn Seaborg transmuted several thousand atoms of bismuth into gold at the Lawrence Berkeley Laboratory. His experimental technique was able to remove protons and neutrons from the bismuth atoms. However, this technique is far too expensive to enable the routine manufacture of gold.1213
In 2002 and 2004, CERN scientists at the Super Proton Synchrotron reported producing a minuscule amount of gold nuclei from lead nuclei, by inducing photon emissions within deliberate near-miss collisions of the lead nuclei.1415 In 2022, CERN scientists at ISOLDE reported producing 18 gold nuclei from proton bombardment of a uranium target.16 In 2025, CERN's ALICE experiment team announced that in the previous decade, they had used the Large Hadron Collider to replicate the 2002 SPS experiments at higher energies. A total of roughly 260 billion gold nuclei were created over three experiment runs, a miniscule amount equivalent to about 90 picograms.1718
See also
Works Cited
- Berthelot, Marcellin (1887). Collection des ancien alchimistes grec. Tome 1. Paris: Steinheil.
- Linden, Stanton J. (2003). The alchemy reader: From Hermes Trismegistus to Isaac Newton.
- Principe, Lawrence M. (2013). The Secrets of Alchemy. Chicago: The University of Chicago Press. ISBN 978-0226103792.
References
Principe 2013, pp. 13, 170. - Principe, Lawrence M. (2013). The Secrets of Alchemy. Chicago: The University of Chicago Press. ISBN 978-0226103792. ↩
Berthelot 1887, p. 128. - Berthelot, Marcellin (1887). Collection des ancien alchimistes grec. Tome 1. Paris: Steinheil. ↩
Linden 2003, p. 54. - Linden, Stanton J. (2003). The alchemy reader: From Hermes Trismegistus to Isaac Newton. ↩
Aleklett, K.; Morrissey, D. J.; Loveland, W.; McGaughey, P. L.; Seaborg, G. T. (March 1, 1981). "Energy dependence of 209Bi fragmentation in relativistic nuclear collisions". Physical Review C. 23 (3): 1044–1046. doi:10.1103/PhysRevC.23.1044. ISSN 0556-2813. Retrieved May 9, 2025. https://link.aps.org/doi/10.1103/PhysRevC.23.1044 ↩
Cecchini, S.; Giacomelli, G.; Giorgini, M.; Mandrioli, G.; Patrizii, L.; Popa, V.; Serra, P.; Sirri, G.; Spurio, M. (2002). "Fragmentation cross sections of 158AGeV Pb ions in various targets measured with CR39 nuclear track detectors". Nuclear Physics A. 707 (3–4): 513–524. arXiv:hep-ex/0201039. doi:10.1016/S0375-9474(02)00962-4. Retrieved May 13, 2025. https://arxiv.org/pdf/hep-ex/0201039 ↩
Scheidenberger, C.; Pshenichnov, I. A.; Sümmerer, K.; Ventura, A.; Bondorf, J. P.; Botvina, A. S.; Mishustin, I. N.; Boutin, D.; Datz, S.; Geissel, H.; Grafström, P.; Knudsen, H.; Krause, H. F.; Lommel, B.; Møller, S. P.; Münzenberg, G.; Schuch, R. H.; Uggerhøj, E.; Uggerhøj, U.; Vane, C. R.; Vilakazi, Z. Z.; Weick, H. (July 29, 2004). "Charge-changing interactions of ultrarelativistic Pb nuclei" (PDF). Physical Review C. 70 (1). doi:10.1103/PhysRevC.70.014902. ISSN 0556-2813. Retrieved May 13, 2025. http://cds.cern.ch/record/971196/files/PhysRevC.70.014902.pdf ↩
"ALICE detects the conversion of lead into gold at the LHC". CERN. May 8, 2025. Retrieved May 13, 2025. https://home.cern/news/news/physics/alice-detects-conversion-lead-gold-lhc ↩
Barzakh, A.E.; Andreyev, A.N.; Atanasov, D.; 43 other members, Isolde collaboration (2022). "Producing gold at ISOLDE-CERN". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 513: 26–32. doi:10.1016/j.nimb.2021.12.011. Retrieved May 13, 2025.{{cite journal}}: CS1 maint: numeric names: authors list (link) https://hal.science/hal-03536891/document ↩
Acharya, S.; Agarwal, A.; Aglieri Rinella, G.; One thousand sixty-four other members, ALICE Collaboration (May 7, 2025). "Proton emission in ultraperipheral Pb-Pb collisions at √(sNN) = 5.02 TeV". Physical Review C. 111 (5). arXiv:2411.07058. doi:10.1103/PhysRevC.111.054906. ISSN 2469-9985. https://doi.org/10.1103%2FPhysRevC.111.054906 ↩
Matson, John (January 31, 2014). "Fact or Fiction?: Lead Can Be Turned Into Gold". Scientific American. Retrieved June 21, 2024. https://www.scientificamerican.com/article/fact-or-fiction-lead-can-be-turned-into-gold/ ↩
R. Sherr; K. T. Bainbridge & H. H. Anderson (1941). "Transmutation of Mercury by Fast Neutrons". Physical Review. 60 (7): 473–479. Bibcode:1941PhRv...60..473S. doi:10.1103/PhysRev.60.473. /wiki/Physical_Review ↩
Aleklett, K.; Morrissey, D. J.; Loveland, W.; McGaughey, P. L.; Seaborg, G. T. (March 1, 1981). "Energy dependence of 209Bi fragmentation in relativistic nuclear collisions". Physical Review C. 23 (3): 1044–1046. doi:10.1103/PhysRevC.23.1044. ISSN 0556-2813. Retrieved May 9, 2025. https://link.aps.org/doi/10.1103/PhysRevC.23.1044 ↩
Matthews, Robert (December 2, 2001). "The Philosopher's Stone". The Daily Telegraph. Retrieved September 22, 2020. https://www.telegraph.co.uk/education/4791069/The-Philosophers-Stone.html ↩
Cecchini, S.; Giacomelli, G.; Giorgini, M.; Mandrioli, G.; Patrizii, L.; Popa, V.; Serra, P.; Sirri, G.; Spurio, M. (2002). "Fragmentation cross sections of 158AGeV Pb ions in various targets measured with CR39 nuclear track detectors". Nuclear Physics A. 707 (3–4): 513–524. arXiv:hep-ex/0201039. doi:10.1016/S0375-9474(02)00962-4. Retrieved May 13, 2025. https://arxiv.org/pdf/hep-ex/0201039 ↩
Scheidenberger, C.; Pshenichnov, I. A.; Sümmerer, K.; Ventura, A.; Bondorf, J. P.; Botvina, A. S.; Mishustin, I. N.; Boutin, D.; Datz, S.; Geissel, H.; Grafström, P.; Knudsen, H.; Krause, H. F.; Lommel, B.; Møller, S. P.; Münzenberg, G.; Schuch, R. H.; Uggerhøj, E.; Uggerhøj, U.; Vane, C. R.; Vilakazi, Z. Z.; Weick, H. (July 29, 2004). "Charge-changing interactions of ultrarelativistic Pb nuclei" (PDF). Physical Review C. 70 (1). doi:10.1103/PhysRevC.70.014902. ISSN 0556-2813. Retrieved May 13, 2025. http://cds.cern.ch/record/971196/files/PhysRevC.70.014902.pdf ↩
Barzakh, A.E.; Andreyev, A.N.; Atanasov, D.; 43 other members, Isolde collaboration (2022). "Producing gold at ISOLDE-CERN". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 513: 26–32. doi:10.1016/j.nimb.2021.12.011. Retrieved May 13, 2025.{{cite journal}}: CS1 maint: numeric names: authors list (link) https://hal.science/hal-03536891/document ↩
Acharya, S.; Agarwal, A.; Aglieri Rinella, G.; One thousand sixty-four other members, ALICE Collaboration (May 7, 2025). "Proton emission in ultraperipheral Pb-Pb collisions at √(sNN) = 5.02 TeV". Physical Review C. 111 (5). arXiv:2411.07058. doi:10.1103/PhysRevC.111.054906. ISSN 2469-9985. https://doi.org/10.1103%2FPhysRevC.111.054906 ↩
"ALICE detects the conversion of lead into gold at the LHC". CERN. May 8, 2025. Retrieved May 13, 2025. https://home.cern/news/news/physics/alice-detects-conversion-lead-gold-lhc ↩