Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page

Boron (5B) naturally occurs as isotopes 10B and 11B, the latter of which makes up about 80% of natural boron. There are 13 radioisotopes that have been discovered, with mass numbers from 7 to 21, all with short half-lives, the longest being that of 8B, with a half-life of only 771.9(9) ms and 12B with a half-life of 20.20(2) ms. All other isotopes have half-lives shorter than 17.35 ms. Those isotopes with mass below 10 decay into helium (via short-lived isotopes of beryllium for 7B and 9B) while those with mass above 11 mostly become carbon.

Related Image Collections Add Image
We don't have any YouTube videos related to Isotopes of boron yet.
We don't have any PDF documents related to Isotopes of boron yet.
We don't have any Books related to Isotopes of boron yet.
We don't have any archived web articles related to Isotopes of boron yet.

List of isotopes

Nuclide1ZNIsotopic mass (Da)234Half-life5[resonance width]Decaymode67Daughterisotope8Spin andparity91011Natural abundance (mole fraction)
Excitation energyNormal proportion12Range of variation
7B5 27.029712(27)570(14) ys[801(20) keV]p6Be13(3/2−)
8B14155 38.0246073(11)771.9(9) msβ+α4He2+
8mB10624(8) keV0+
9B5 49.0133296(10)800(300) zsp8Be163/2−
10B175 510.012936862(16)Stable3+[0.189, 0.204]18
11B5 611.009305167(13)Stable3/2−[0.796, 0.811]19
11mB12560(9) keV1/2+, (3/2+)
12B5 712.0143526(14)20.20(2) msβ− (99.40(2)%)12C1+
β−α (0.60(2)%)8Be20
13B5 813.0177800(11)17.16(18) msβ− (99.734(36)%)13C3/2−
β−n (0.266(36)%)12C
14B5 914.025404(23)12.36(29) msβ− (93.96(23)%)14C2−
β−n (6.04(23)%)13C
β−2n ?2112C ?
14mB17065(29) keV4.15(1.90) zsIT ?220+
15B51015.031087(23)10.18(35) msβ−n (98.7(1.0)%)14C3/2−
β− (< 1.3%)15C
β−2n (< 1.5%)13C
16B51116.039841(26)> 4.6 zsn ?2315B ?0−
17B2451217.04693(22)5.08(5) msβ−n (63(1)%)16C(3/2−)
β− (21.1(2.4)%)17C
β−2n (12(2)%)15C
β−3n (3.5(7)%)14C
β−4n (0.4(3)%)13C
18B51318.05560(22)< 26 nsn17B(2−)
19B2551419.06417(56)2.92(13) msβ−n (71(9)%)18C(3/2−)
β−2n (17(5)%)17C
β−3n (< 9.1%)16C
β− (> 2.9%)19C
20B2651520.07451(59)> 912.4 ysn19B(1−, 2−)
21B2751621.08415(60)> 760 ys2n19B(3/2−)
This table header & footer:
  • view

Boron-8

Boron-8 is an isotope of boron that undergoes β+ decay to beryllium-8 with a half-life of 771.9(9) ms. It is the strongest candidate for a halo nucleus with a loosely-bound proton, in contrast to neutron halo nuclei such as lithium-11.28

Although boron-8 beta decay neutrinos from the Sun make up only about 80 ppm of the total solar neutrino flux, they have a higher energy centered around 10 MeV,29 and are an important background to dark matter direct detection experiments.30 They are the first component of the neutrino floor that dark matter direct detection experiments are expected to eventually encounter.

Applications

Boron-10

Boron-10 is used in boron neutron capture therapy as an experimental treatment of some brain cancers.

https://borates.today/isotopes-a-comprehensive-guide/#:~:text=Boron%20isotope%20elements%20with%20masses,11%20mostly%20decay%20into%20carbon.

References

  1. mB – Excited nuclear isomer. /wiki/Nuclear_isomer

  2. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  3. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  4. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  5. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. Modes of decay: n:Neutron emissionp:Proton emission /wiki/Neutron_emission

  8. Bold symbol as daughter – Daughter product is stable.

  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  10. ( ) spin value – Indicates spin with weak assignment arguments.

  11. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. Subsequently decays by double proton emission to 4He for a net reaction of 7B → 4He + 3 1H

  14. Has 1 halo proton /wiki/Halo_nucleus

  15. Intermediate product of a branch of proton-proton chain in stellar nucleosynthesis as part of the process converting hydrogen to helium /wiki/Proton-proton_chain#The_p–p_III_branch

  16. Immediately decays into two α particles, for a net reaction of 9B → 2 4He + 1H

  17. One of the few stable odd-odd nuclei /wiki/Even_and_odd_atomic_nuclei#Odd_proton,_odd_neutron

  18. "Atomic Weight of Boron". CIAAW. https://ciaaw.org/boron.htm

  19. "Atomic Weight of Boron". CIAAW. https://ciaaw.org/boron.htm

  20. Immediately decays into two α particles, for a net reaction of 12B → 3 4He +  e−

  21. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  22. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  23. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

  24. Has 2 halo neutrons

  25. Has 4 halo neutrons

  26. Leblond, S.; et al. (2018). "First observation of 20B and 21B". Physical Review Letters. 121 (26): 262502–1–262502–6. arXiv:1901.00455. doi:10.1103/PhysRevLett.121.262502. PMID 30636115. S2CID 58602601. /wiki/ArXiv_(identifier)

  27. Leblond, S.; et al. (2018). "First observation of 20B and 21B". Physical Review Letters. 121 (26): 262502–1–262502–6. arXiv:1901.00455. doi:10.1103/PhysRevLett.121.262502. PMID 30636115. S2CID 58602601. /wiki/ArXiv_(identifier)

  28. Maaß, Bernhard; Müller, Peter; Nörtershäuser, Wilfried; Clark, Jason; Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg; Levand, Anthony; Orford, Rodney; Sánchez, Rodolfo; Savard, Guy; Sommer, Felix (November 2017). "Towards laser spectroscopy of the proton-halo candidate boron-8". Hyperfine Interactions. 238 (1): 25. Bibcode:2017HyInt.238...25M. doi:10.1007/s10751-017-1399-5. S2CID 254551036. /wiki/Bibcode_(identifier)

  29. Bellerive, A. (2004). "Review of solar neutrino experiments". International Journal of Modern Physics A. 19 (8): 1167–1179. arXiv:hep-ex/0312045. Bibcode:2004IJMPA..19.1167B. doi:10.1142/S0217751X04019093. S2CID 16980300. /wiki/ArXiv_(identifier)

  30. Cerdeno, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro; Vincent, Aaron C.; Boehm, Celine (2016). "Physics from solar neutrinos in dark matter direct detection experiments". JHEP. 2016 (5): 118. arXiv:1604.01025. Bibcode:2016JHEP...05..118C. doi:10.1007/JHEP05(2016)118. S2CID 55112052. /wiki/ArXiv_(identifier)