Boron (5B) naturally occurs as isotopes 10B and 11B, the latter of which makes up about 80% of natural boron. There are 13 radioisotopes that have been discovered, with mass numbers from 7 to 21, all with short half-lives, the longest being that of 8B, with a half-life of only 771.9(9) ms and 12B with a half-life of 20.20(2) ms. All other isotopes have half-lives shorter than 17.35 ms. Those isotopes with mass below 10 decay into helium (via short-lived isotopes of beryllium for 7B and 9B) while those with mass above 11 mostly become carbon.
List of isotopes
Nuclide1 | Z | N | Isotopic mass (Da)234 | Half-life5[resonance width] | Decaymode67 | Daughterisotope8 | Spin andparity91011 | Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion12 | Range of variation | |||||||||||||||||
7B | 5 | 2 | 7.029712(27) | 570(14) ys[801(20) keV] | p | 6Be13 | (3/2−) | ||||||||||||
8B1415 | 5 | 3 | 8.0246073(11) | 771.9(9) ms | β+α | 4He | 2+ | ||||||||||||
8mB | 10624(8) keV | 0+ | |||||||||||||||||
9B | 5 | 4 | 9.0133296(10) | 800(300) zs | p | 8Be16 | 3/2− | ||||||||||||
10B17 | 5 | 5 | 10.012936862(16) | Stable | 3+ | [0.189, 0.204]18 | |||||||||||||
11B | 5 | 6 | 11.009305167(13) | Stable | 3/2− | [0.796, 0.811]19 | |||||||||||||
11mB | 12560(9) keV | 1/2+, (3/2+) | |||||||||||||||||
12B | 5 | 7 | 12.0143526(14) | 20.20(2) ms | β− (99.40(2)%) | 12C | 1+ | ||||||||||||
β−α (0.60(2)%) | 8Be20 | ||||||||||||||||||
13B | 5 | 8 | 13.0177800(11) | 17.16(18) ms | β− (99.734(36)%) | 13C | 3/2− | ||||||||||||
β−n (0.266(36)%) | 12C | ||||||||||||||||||
14B | 5 | 9 | 14.025404(23) | 12.36(29) ms | β− (93.96(23)%) | 14C | 2− | ||||||||||||
β−n (6.04(23)%) | 13C | ||||||||||||||||||
β−2n ?21 | 12C ? | ||||||||||||||||||
14mB | 17065(29) keV | 4.15(1.90) zs | IT ?22 | 0+ | |||||||||||||||
15B | 5 | 10 | 15.031087(23) | 10.18(35) ms | β−n (98.7(1.0)%) | 14C | 3/2− | ||||||||||||
β− (< 1.3%) | 15C | ||||||||||||||||||
β−2n (< 1.5%) | 13C | ||||||||||||||||||
16B | 5 | 11 | 16.039841(26) | > 4.6 zs | n ?23 | 15B ? | 0− | ||||||||||||
17B24 | 5 | 12 | 17.04693(22) | 5.08(5) ms | β−n (63(1)%) | 16C | (3/2−) | ||||||||||||
β− (21.1(2.4)%) | 17C | ||||||||||||||||||
β−2n (12(2)%) | 15C | ||||||||||||||||||
β−3n (3.5(7)%) | 14C | ||||||||||||||||||
β−4n (0.4(3)%) | 13C | ||||||||||||||||||
18B | 5 | 13 | 18.05560(22) | < 26 ns | n | 17B | (2−) | ||||||||||||
19B25 | 5 | 14 | 19.06417(56) | 2.92(13) ms | β−n (71(9)%) | 18C | (3/2−) | ||||||||||||
β−2n (17(5)%) | 17C | ||||||||||||||||||
β−3n (< 9.1%) | 16C | ||||||||||||||||||
β− (> 2.9%) | 19C | ||||||||||||||||||
20B26 | 5 | 15 | 20.07451(59) | > 912.4 ys | n | 19B | (1−, 2−) | ||||||||||||
21B27 | 5 | 16 | 21.08415(60) | > 760 ys | 2n | 19B | (3/2−) | ||||||||||||
This table header & footer:
|
Boron-8
Boron-8 is an isotope of boron that undergoes β+ decay to beryllium-8 with a half-life of 771.9(9) ms. It is the strongest candidate for a halo nucleus with a loosely-bound proton, in contrast to neutron halo nuclei such as lithium-11.28
Although boron-8 beta decay neutrinos from the Sun make up only about 80 ppm of the total solar neutrino flux, they have a higher energy centered around 10 MeV,29 and are an important background to dark matter direct detection experiments.30 They are the first component of the neutrino floor that dark matter direct detection experiments are expected to eventually encounter.
Applications
Boron-10
Boron-10 is used in boron neutron capture therapy as an experimental treatment of some brain cancers.
References
mB – Excited nuclear isomer. /wiki/Nuclear_isomer ↩
Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier) ↩
( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits. ↩
# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS). ↩
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf ↩
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf ↩
Modes of decay: n:Neutron emissionp:Proton emission /wiki/Neutron_emission ↩
Bold symbol as daughter – Daughter product is stable. ↩
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf ↩
( ) spin value – Indicates spin with weak assignment arguments. ↩
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN). ↩
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf ↩
Subsequently decays by double proton emission to 4He for a net reaction of 7B → 4He + 3 1H ↩
Has 1 halo proton /wiki/Halo_nucleus ↩
Intermediate product of a branch of proton-proton chain in stellar nucleosynthesis as part of the process converting hydrogen to helium /wiki/Proton-proton_chain#The_p–p_III_branch ↩
Immediately decays into two α particles, for a net reaction of 9B → 2 4He + 1H ↩
One of the few stable odd-odd nuclei /wiki/Even_and_odd_atomic_nuclei#Odd_proton,_odd_neutron ↩
"Atomic Weight of Boron". CIAAW. https://ciaaw.org/boron.htm ↩
"Atomic Weight of Boron". CIAAW. https://ciaaw.org/boron.htm ↩
Immediately decays into two α particles, for a net reaction of 12B → 3 4He + e− ↩
Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide. ↩
Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide. ↩
Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide. ↩
Has 2 halo neutrons ↩
Has 4 halo neutrons ↩
Leblond, S.; et al. (2018). "First observation of 20B and 21B". Physical Review Letters. 121 (26): 262502–1–262502–6. arXiv:1901.00455. doi:10.1103/PhysRevLett.121.262502. PMID 30636115. S2CID 58602601. /wiki/ArXiv_(identifier) ↩
Leblond, S.; et al. (2018). "First observation of 20B and 21B". Physical Review Letters. 121 (26): 262502–1–262502–6. arXiv:1901.00455. doi:10.1103/PhysRevLett.121.262502. PMID 30636115. S2CID 58602601. /wiki/ArXiv_(identifier) ↩
Maaß, Bernhard; Müller, Peter; Nörtershäuser, Wilfried; Clark, Jason; Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg; Levand, Anthony; Orford, Rodney; Sánchez, Rodolfo; Savard, Guy; Sommer, Felix (November 2017). "Towards laser spectroscopy of the proton-halo candidate boron-8". Hyperfine Interactions. 238 (1): 25. Bibcode:2017HyInt.238...25M. doi:10.1007/s10751-017-1399-5. S2CID 254551036. /wiki/Bibcode_(identifier) ↩
Bellerive, A. (2004). "Review of solar neutrino experiments". International Journal of Modern Physics A. 19 (8): 1167–1179. arXiv:hep-ex/0312045. Bibcode:2004IJMPA..19.1167B. doi:10.1142/S0217751X04019093. S2CID 16980300. /wiki/ArXiv_(identifier) ↩
Cerdeno, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro; Vincent, Aaron C.; Boehm, Celine (2016). "Physics from solar neutrinos in dark matter direct detection experiments". JHEP. 2016 (5): 118. arXiv:1604.01025. Bibcode:2016JHEP...05..118C. doi:10.1007/JHEP05(2016)118. S2CID 55112052. /wiki/ArXiv_(identifier) ↩