Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Abramov's algorithm

In mathematics, particularly in computer algebra, Abramov's algorithm computes all rational solutions of a linear recurrence equation with polynomial coefficients. The algorithm was published by Sergei A. Abramov in 1989.

We don't have any images related to Abramov's algorithm yet.
We don't have any YouTube videos related to Abramov's algorithm yet.
We don't have any PDF documents related to Abramov's algorithm yet.
We don't have any Books related to Abramov's algorithm yet.
We don't have any archived web articles related to Abramov's algorithm yet.

Universal denominator

The main concept in Abramov's algorithm is a universal denominator. Let K {\textstyle \mathbb {K} } be a field of characteristic zero. The dispersion dis ⁡ ( p , q ) {\textstyle \operatorname {dis} (p,q)} of two polynomials p , q ∈ K [ n ] {\textstyle p,q\in \mathbb {K} [n]} is defined as dis ⁡ ( p , q ) = max { k ∈ N : deg ⁡ ( gcd ( p ( n ) , q ( n + k ) ) ) ≥ 1 } ∪ { − 1 } , {\displaystyle \operatorname {dis} (p,q)=\max\{k\in \mathbb {N} \,:\,\deg(\gcd(p(n),q(n+k)))\geq 1\}\cup \{-1\},} where N {\textstyle \mathbb {N} } denotes the set of non-negative integers. Therefore the dispersion is the maximum k ∈ N {\textstyle k\in \mathbb {N} } such that the polynomial p {\textstyle p} and the k {\textstyle k} -times shifted polynomial q {\displaystyle q} have a common factor. It is − 1 {\textstyle -1} if such a k {\textstyle k} does not exist. The dispersion can be computed as the largest non-negative integer root of the resultant res n ⁡ ( p ( n ) , q ( n + k ) ) ∈ K [ k ] {\textstyle \operatorname {res} _{n}(p(n),q(n+k))\in \mathbb {K} [k]} .34 Let ∑ k = 0 r p k ( n ) y ( n + k ) = f ( n ) {\textstyle \sum _{k=0}^{r}p_{k}(n)\,y(n+k)=f(n)} be a recurrence equation of order r {\textstyle r} with polynomial coefficients p k ∈ K [ n ] {\displaystyle p_{k}\in \mathbb {K} [n]} , polynomial right-hand side f ∈ K [ n ] {\textstyle f\in \mathbb {K} [n]} and rational sequence solution y ( n ) ∈ K ( n ) {\textstyle y(n)\in \mathbb {K} (n)} . It is possible to write y ( n ) = p ( n ) / q ( n ) {\textstyle y(n)=p(n)/q(n)} for two relatively prime polynomials p , q ∈ K [ n ] {\textstyle p,q\in \mathbb {K} [n]} . Let D = dis ⁡ ( p r ( n − r ) , p 0 ( n ) ) {\textstyle D=\operatorname {dis} (p_{r}(n-r),p_{0}(n))} and u ( n ) = gcd ( [ p 0 ( n + D ) ] D + 1 _ , [ p r ( n − r ) ] D + 1 _ ) {\displaystyle u(n)=\gcd([p_{0}(n+D)]^{\underline {D+1}},[p_{r}(n-r)]^{\underline {D+1}})} where [ p ( n ) ] k _ = p ( n ) p ( n − 1 ) ⋯ p ( n − k + 1 ) {\textstyle [p(n)]^{\underline {k}}=p(n)p(n-1)\cdots p(n-k+1)} denotes the falling factorial of a function. Then q ( n ) {\textstyle q(n)} divides u ( n ) {\textstyle u(n)} . So the polynomial u ( n ) {\textstyle u(n)} can be used as a denominator for all rational solutions y ( n ) {\textstyle y(n)} and hence it is called a universal denominator.5

Algorithm

Let again ∑ k = 0 r p k ( n ) y ( n + k ) = f ( n ) {\textstyle \sum _{k=0}^{r}p_{k}(n)\,y(n+k)=f(n)} be a recurrence equation with polynomial coefficients and u ( n ) {\textstyle u(n)} a universal denominator. After substituting y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n)/u(n)} for an unknown polynomial z ( n ) ∈ K [ n ] {\textstyle z(n)\in \mathbb {K} [n]} and setting ℓ ( n ) = lcm ⁡ ( u ( n ) , … , u ( n + r ) ) {\textstyle \ell (n)=\operatorname {lcm} (u(n),\dots ,u(n+r))} the recurrence equation is equivalent to ∑ k = 0 r p k ( n ) z ( n + k ) u ( n + k ) ℓ ( n ) = f ( n ) ℓ ( n ) . {\displaystyle \sum _{k=0}^{r}p_{k}(n){\frac {z(n+k)}{u(n+k)}}\ell (n)=f(n)\ell (n).} As the u ( n + k ) {\textstyle u(n+k)} cancel this is a linear recurrence equation with polynomial coefficients which can be solved for an unknown polynomial solution z ( n ) {\textstyle z(n)} . There are algorithms to find polynomial solutions. The solutions for z ( n ) {\textstyle z(n)} can then be used again to compute the rational solutions y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n)/u(n)} .6

algorithm rational_solutions is input: Linear recurrence equation ∑ k = 0 r p k ( n ) y ( n + k ) = f ( n ) , p k , f ∈ K [ n ] , p 0 , p r ≠ 0 {\textstyle \sum _{k=0}^{r}p_{k}(n)\,y(n+k)=f(n),p_{k},f\in \mathbb {K} [n],p_{0},p_{r}\neq 0} . output: The general rational solution y {\textstyle y} if there are any solutions, otherwise false. D = disp ⁡ ( p r ( n − r ) , p 0 ( n ) ) {\textstyle D=\operatorname {disp} (p_{r}(n-r),p_{0}(n))} u ( n ) = gcd ( [ p 0 ( n + D ) ] D + 1 _ , [ p r ( n − r ) ] D + 1 _ ) {\textstyle u(n)=\gcd([p_{0}(n+D)]^{\underline {D+1}},[p_{r}(n-r)]^{\underline {D+1}})} ℓ ( n ) = lcm ⁡ ( u ( n ) , … , u ( n + r ) ) {\textstyle \ell (n)=\operatorname {lcm} (u(n),\dots ,u(n+r))} Solve ∑ k = 0 r p k ( n ) z ( n + k ) u ( n + k ) ℓ ( n ) = f ( n ) ℓ ( n ) {\textstyle \sum _{k=0}^{r}p_{k}(n){\frac {z(n+k)}{u(n+k)}}\ell (n)=f(n)\ell (n)} for general polynomial solution z ( n ) {\textstyle z(n)} if solution z ( n ) {\textstyle z(n)} exists then return general solution y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n)/u(n)} else return false end if

Example

The homogeneous recurrence equation of order 1 {\textstyle 1} ( n − 1 ) y ( n ) + ( − n − 1 ) y ( n + 1 ) = 0 {\displaystyle (n-1)\,y(n)+(-n-1)\,y(n+1)=0} over Q {\textstyle \mathbb {Q} } has a rational solution. It can be computed by considering the dispersion D = dis ⁡ ( p 1 ( n − 1 ) , p 0 ( n ) ) = disp ⁡ ( − n , n − 1 ) = 1. {\displaystyle D=\operatorname {dis} (p_{1}(n-1),p_{0}(n))=\operatorname {disp} (-n,n-1)=1.} This yields the following universal denominator: u ( n ) = gcd ( [ p 0 ( n + 1 ) ] 2 _ , [ p r ( n − 1 ) ] 2 _ ) = ( n − 1 ) n {\displaystyle u(n)=\gcd([p_{0}(n+1)]^{\underline {2}},[p_{r}(n-1)]^{\underline {2}})=(n-1)n} and ℓ ( n ) = lcm ⁡ ( u ( n ) , u ( n + 1 ) ) = ( n − 1 ) n ( n + 1 ) . {\displaystyle \ell (n)=\operatorname {lcm} (u(n),u(n+1))=(n-1)n(n+1).} Multiplying the original recurrence equation with ℓ ( n ) {\textstyle \ell (n)} and substituting y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n)/u(n)} leads to ( n − 1 ) ( n + 1 ) z ( n ) + ( − n − 1 ) ( n − 1 ) z ( n + 1 ) = 0. {\displaystyle (n-1)(n+1)\,z(n)+(-n-1)(n-1)\,z(n+1)=0.} This equation has the polynomial solution z ( n ) = c {\textstyle z(n)=c} for an arbitrary constant c ∈ Q {\textstyle c\in \mathbb {Q} } . Using y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n)/u(n)} the general rational solution is y ( n ) = c ( n − 1 ) n {\displaystyle y(n)={\frac {c}{(n-1)n}}} for arbitrary c ∈ Q {\textstyle c\in \mathbb {Q} } .

WikiProject Mathematics on Wikidata

References

  1. Abramov, Sergei A. (1989). "Rational solutions of linear differential and difference equations with polynomial coefficients". USSR Computational Mathematics and Mathematical Physics. 29 (6): 7–12. doi:10.1016/s0041-5553(89)80002-3. ISSN 0041-5553. /wiki/Doi_(identifier)

  2. Abramov, Sergei A. (1995). "Rational solutions of linear difference and q -difference equations with polynomial coefficients". Proceedings of the 1995 international symposium on Symbolic and algebraic computation - ISSAC '95. pp. 285–289. doi:10.1145/220346.220383. ISBN 978-0897916998. S2CID 15424889. 978-0897916998

  3. Man, Yiu-Kwong; Wright, Francis J. (1994). "Fast polynomial dispersion computation and its application to indefinite summation". Proceedings of the international symposium on Symbolic and algebraic computation - ISSAC '94. pp. 175–180. doi:10.1145/190347.190413. ISBN 978-0897916387. S2CID 2192728. 978-0897916387

  4. Gerhard, Jürgen (2005). Modular Algorithms in Symbolic Summation and Symbolic Integration. Lecture Notes in Computer Science. Vol. 3218. doi:10.1007/b104035. ISBN 978-3-540-24061-7. ISSN 0302-9743. 978-3-540-24061-7

  5. Chen, William Y. C.; Paule, Peter; Saad, Husam L. (2007). "Converging to Gosper's Algorithm". arXiv:0711.3386 [math.CA]. /wiki/ArXiv_(identifier)

  6. Abramov, Sergei A. (1995). "Rational solutions of linear difference and q -difference equations with polynomial coefficients". Proceedings of the 1995 international symposium on Symbolic and algebraic computation - ISSAC '95. pp. 285–289. doi:10.1145/220346.220383. ISBN 978-0897916998. S2CID 15424889. 978-0897916998