In number theory, the integer square root (isqrt) of a non-negative integer n is the non-negative integer m which is the greatest integer less than or equal to the square root of n, isqrt ( n ) = ⌊ n ⌋ . {\displaystyle \operatorname {isqrt} (n)=\lfloor {\sqrt {n}}\rfloor .}
For example, isqrt ( 27 ) = ⌊ 27 ⌋ = ⌊ 5.19615242270663... ⌋ = 5. {\displaystyle \operatorname {isqrt} (27)=\lfloor {\sqrt {27}}\rfloor =\lfloor 5.19615242270663...\rfloor =5.}