In number theory, Carmichael's theorem, named after the American mathematician R. D. Carmichael, states that, for any nondegenerate Lucas sequence of the first kind Un(P, Q) with relatively prime parameters P, Q and positive discriminant, an element Un with n ≠ 1, 2, 6 has at least one prime divisor that does not divide any earlier one except the 12th Fibonacci number F(12) = U12(1, −1) = 144 and its equivalent U12(−1, −1) = −144.
In particular, for n greater than 12, the nth Fibonacci number F(n) has at least one prime divisor that does not divide any earlier Fibonacci number.
Carmichael (1913, Theorem 21) proved this theorem. Recently, Yabuta (2001) gave a simple proof. Bilu, Hanrot, Voutier and Mignotte (2001) extended it to the case of negative discriminants (where it is true for all n > 30).