Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks. Their creation was inspired by biological neural circuitry. While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. Little research was conducted on ANNs in the 1970s and 1980s, with the AAAI calling this period an "AI winter".
Later, advances in hardware and the development of the backpropagation algorithm, as well as recurrent neural networks and convolutional neural networks, renewed interest in ANNs. The 2010s saw the development of a deep neural network (i.e., one with many layers) called AlexNet. It greatly outperformed other image recognition models, and is thought to have launched the ongoing AI spring, and further increasing interest in deep learning. The transformer architecture was first described in 2017 as a method to teach ANNs grammatical dependencies in language, and is the predominant architecture used by large language models such as GPT-4. Diffusion models were first described in 2015, and became the basis of image generation models such as DALL-E in the 2020s.