In mathematics and theoretical physics, a tensor is antisymmetric or alternating on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. The index subset must generally either be all covariant or all contravariant.
For example, T i j k … = − T j i k … = T j k i … = − T k j i … = T k i j … = − T i k j … {\displaystyle T_{ijk\dots }=-T_{jik\dots }=T_{jki\dots }=-T_{kji\dots }=T_{kij\dots }=-T_{ikj\dots }} holds when the tensor is antisymmetric with respect to its first three indices.
If a tensor changes sign under exchange of each pair of its indices, then the tensor is completely (or totally) antisymmetric. A completely antisymmetric covariant tensor field of order k {\displaystyle k} may be referred to as a differential k {\displaystyle k} -form, and a completely antisymmetric contravariant tensor field may be referred to as a k {\displaystyle k} -vector field.