In condensed matter physics, the independent electron approximation is a simplification used in complex systems, consisting of many electrons, that approximates the electron–electron interaction in crystals as null. It is a requirement for both the free electron model and the nearly-free electron model, where it is used alongside Bloch's theorem. In quantum mechanics, this approximation is often used to simplify a quantum many-body problem into single-particle approximations.
While this simplification holds for many systems, electron–electron interactions may be very important for certain properties in materials. For example, the theory covering much of superconductivity is BCS theory, in which the attraction of pairs of electrons to each other, termed "Cooper pairs", is the mechanism behind superconductivity. One major effect of electron–electron interactions is that electrons distribute around the ions so that they screen the ions in the lattice from other electrons.