In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written ( n k ) . {\displaystyle {\tbinom {n}{k}}.} It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula
which using factorial notation can be compactly expressed as
For example, the fourth power of 1 + x is
and the binomial coefficient ( 4 2 ) = 4 × 3 2 × 1 = 4 ! 2 ! 2 ! = 6 {\displaystyle {\tbinom {4}{2}}={\tfrac {4\times 3}{2\times 1}}={\tfrac {4!}{2!2!}}=6} is the coefficient of the x2 term.
Arranging the numbers ( n 0 ) , ( n 1 ) , … , ( n n ) {\displaystyle {\tbinom {n}{0}},{\tbinom {n}{1}},\ldots ,{\tbinom {n}{n}}} in successive rows for n = 0, 1, 2, ... gives a triangular array called Pascal's triangle, satisfying the recurrence relation
The binomial coefficients occur in many areas of mathematics, and especially in combinatorics. In combinatorics the symbol ( n k ) {\displaystyle {\tbinom {n}{k}}} is usually read as "n choose k" because there are ( n k ) {\displaystyle {\tbinom {n}{k}}} ways to choose an (unordered) subset of k elements from a fixed set of n elements. For example, there are ( 4 2 ) = 6 {\displaystyle {\tbinom {4}{2}}=6} ways to choose 2 elements from {1, 2, 3, 4}, namely {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 4}.
The first form of the binomial coefficients can be generalized to ( z k ) {\displaystyle {\tbinom {z}{k}}} for any complex number z and integer k ≥ 0, and many of their properties continue to hold in this more general form.