The dalton or unified atomic mass unit (symbols: Da or u, respectively) is a unit of mass defined as 1/12 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. It is a non-SI unit accepted for use with SI. The word "unified" emphasizes that the definition was accepted by both IUPAP and IUPAC. The atomic mass constant, denoted mu, is defined identically. Expressed in terms of ma(12C), the atomic mass of carbon-12: mu = ma(12C)/12 = 1 Da. Its value in SI units is an experimentally determined quantity. The 2022 CODATA recommended value of the atomic mass constant expressed in the SI base unit kilogram is:
mu = 1.66053906892(52)×10−27 kg.
As of June 2025, the value given in the SI Brochure is the 2018 CODATA recommended value:
mu = 1.660539040(20)×10−27 kg.
The value serves as a conversion factor of mass from daltons to kilograms, which can easily be converted to grams and other metric units of mass. The 2019 revision of the SI redefined the kilogram by fixing the value of the Planck constant (h), improving the precision of the atomic mass constant expressed in SI units by anchoring it to fixed physical constants. Although the dalton remains defined via carbon-12, the revision enhances traceability and accuracy in atomic mass measurements.
The mole is a unit of amount of substance used in chemistry and physics, such that the mass of one mole of a substance expressed in grams (i.e., the molar mass in g/mol or kg/kmol) is numerically equal to the average mass of an elementary entity of the substance (atom, molecule, or formula unit) expressed in daltons. For example, the average mass of one molecule of water is about 18.0153 Da, and the mass of one mole of water is about 18.0153 g. A protein whose molecule has an average mass of 64 kDa would have a molar mass of 64 kg/mol. However, while this equality can be assumed for practical purposes, it is only approximate, because of the 2019 redefinition of the mole.