In numerical analysis and applied mathematics, sinc numerical methods are numerical techniques for finding approximate solutions of partial differential equations and integral equations based on the translates of sinc function and Cardinal function C(f,h) which is an expansion of f defined by
where the step size h>0 and where the sinc function is defined by
Sinc approximation methods excel for problems whose solutions may have singularities, or infinite domains, or boundary layers.
The truncated Sinc expansion of f is defined by the following series: