In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a rectangular matrix in which each ascending skew-diagonal from left to right is constant. For example,
[ a b c d e b c d e f c d e f g d e f g h e f g h i ] . {\displaystyle \qquad {\begin{bmatrix}a&b&c&d&e\\b&c&d&e&f\\c&d&e&f&g\\d&e&f&g&h\\e&f&g&h&i\\\end{bmatrix}}.}
More generally, a Hankel matrix is any n × n {\displaystyle n\times n} matrix A {\displaystyle A} of the form
A = [ a 0 a 1 a 2 … a n − 1 a 1 a 2 ⋮ a 2 a 2 n − 4 ⋮ a 2 n − 4 a 2 n − 3 a n − 1 … a 2 n − 4 a 2 n − 3 a 2 n − 2 ] . {\displaystyle A={\begin{bmatrix}a_{0}&a_{1}&a_{2}&\ldots &a_{n-1}\\a_{1}&a_{2}&&&\vdots \\a_{2}&&&&a_{2n-4}\\\vdots &&&a_{2n-4}&a_{2n-3}\\a_{n-1}&\ldots &a_{2n-4}&a_{2n-3}&a_{2n-2}\end{bmatrix}}.}
In terms of the components, if the i , j {\displaystyle i,j} element of A {\displaystyle A} is denoted with A i j {\displaystyle A_{ij}} , and assuming i ≤ j {\displaystyle i\leq j} , then we have A i , j = A i + k , j − k {\displaystyle A_{i,j}=A_{i+k,j-k}} for all k = 0 , . . . , j − i . {\displaystyle k=0,...,j-i.}