In electronics, diode modelling refers to the mathematical models used to approximate the actual behaviour of real diodes to enable calculations and circuit analysis. A diode's I-V curve is nonlinear.
A very accurate, but complicated, physical model composes the I-V curve from three exponentials with a slightly different steepness (i.e. ideality factor), which correspond to different recombination mechanisms in the device; at very large and very tiny currents the curve can be continued by linear segments (i.e. resistive behaviour).
In a relatively good approximation a diode is modelled by the single-exponential Shockley diode law. This nonlinearity still complicates calculations in circuits involving diodes so even simpler models are often used.
This article discusses the modelling of p-n junction diodes, but the techniques may be generalized to other solid state diodes.