In mathematics, a functional is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author).
This article is mainly concerned with the second concept, which arose in the early 18th century as part of the calculus of variations. The first concept, which is more modern and abstract, is discussed in detail in a separate article, under the name linear form. The third concept is detailed in the computer science article on higher-order functions.
In the case where the space X {\displaystyle X} is a space of functions, the functional is a "function of a function", and some older authors actually define the term "functional" to mean "function of a function". However, the fact that X {\displaystyle X} is a space of functions is not mathematically essential, so this older definition is no longer prevalent.
The term originates from the calculus of variations, where one searches for a function that minimizes (or maximizes) a given functional. A particularly important application in physics is search for a state of a system that minimizes (or maximizes) the action, or in other words the time integral of the Lagrangian.