short-acting insulin analogues are developed to have a shorter duration of action than regular insulin, while long-acting insulin analogues are meant to have a peakless action profile and a prolonged duration of action.
Short-acting insulin analogues are modified forms of recombinant human insulin designed to enhance subcutaneous absorption and accelerate glycemic control. In standard insulin formulations, regular insulin monomers naturally aggregate into hexamers, a configuration that delays absorption and prolongs the onset of action. Before entering the bloodstream, these hexamers must dissociate into dimers and then monomers, which slows their availability for glucose regulation. To address this limitation, insulin analogues have been engineered to maintain a monomeric or dimeric configuration, allowing for faster absorption and reducing the time to onset to approximately 5 to 15 minutes. Insulin lispro, insulin aspart, and insulin glulisine are the most widely used short-acting insulin analogues. These formulations are structurally identical to human insulin, except for amino acid substitutions at one or two positions, which modify their stability and absorption characteristics.
Insulin lispro, which was first approved in 1996 and marketed as Humalog among others, works by reversing the final lysine and proline residues on the C-terminal end of the B-chain. This modification does not alter receptor binding, but blocks the formation of insulin dimers and hexamers. Clinical studies have demonstrated that the use of insulin lispro instead of regular
insulin can reduce hypoglycemia incidence and improve glycemic control. Insulin aspart, which was approved in 2000 and is marketed under the name Novolog among others, has effects comparable to those of insulin lispro, but has a lesser risk of nocturnal hypoglycemia. It works by replacing a proline with an aspartic acid at the B28 position. Insulin glulisine has nearly identical properties to the other two short-acting analogues, but differs in the fact that the amino acid asparagine at position B3 is replaced by lysine and the lysine in position B29 is replaced by glutamic acid. It was approved in 2004 and is sold under the name Apidra.
These short-acting insulin analogues play a crucial role in modern diabetes management, as their fast onset and shorter duration of action allow for more precise postprandial glucose control. By closely mimicking endogenous insulin secretion, these analogues enhance glycemic stability, reduce post-meal blood sugar spikes, and minimize the risk of hypoglycemic events. Their pharmacokinetic properties make them particularly beneficial for individuals requiring flexible meal timing and those using intensive insulin therapy.
Long-acting insulin analogues are designed to provide continuous basal insulin coverage for up to 24 hours, with the exception of ultra-long-acting analogues, which work for up to a week. These include insulin glargine, insulin detemir, insulin degludec, and insulin icodec, which have been modified through amino acid substitutions and fatty acid conjugation to alter their subcutaneous absorption and extend their duration of action. A key feature of long-acting insulin analogues is reversible albumin binding and di-hexamer formation, which slow insulin dissociation and provide a more stable pharmacokinetic and pharmacodynamic profile, reducing glycemic fluctuations and nocturnal hypoglycemia.
Insulin degludec, marketed as Tresiba and approved in 2015, is an ultra-long-acting insulin with a duration of up to 42 hours. It utilizes multi-hexamer formation and albumin binding to provide a steady insulin release with lower intra-individual variability and greater dosing flexibility. Compared to insulin glargine and detemir, degludec offers a reduced risk of nocturnal hypoglycemia and allows dosing intervals of 8 to 40 hours without compromising glycemic control. These advancements have improved diabetes management by providing more stable blood sugar control, fewer hypoglycemic episodes, and greater convenience for patients.
Insulin icodec is, as of 2025, the newest and longest-acting insulin analogue. It has a plasma half-life that is more than eight days, meaning it is a once-weekly insulin. It was approved in 2024 and is marketed as Awuqli by Novo Nordisk. Insulin icodec consists of two peptide chains linked by a disulfide bridge. It contains a C20 fatty diacid-containing side chain, which facilitates strong, reversible binding to albumin. Additionally, three amino acid substitutions are introduced to enhance molecular stability, reduce insulin receptor binding, and slow clearance. These modifications collectively contribute to the prolonged half-life.
The most common side effect in all insulin analogues is low blood sugar, while in more serious cases, side effects may include low blood potassium. Insulin allergies are also a concern, although they are not prevalent, affecting only about 2% of people in some form. Insulin analogues are generally considered safe during pregnancy, and many are used in the treatment of gestational diabetes.
Neutral Protamine Hagedorn (NPH) insulin, or isophane insulin, is an intermediate-acting insulin developed in 1946 to extend insulin activity through the addition of protamine, which slows absorption. It has an onset of about 90 minutes and lasts up to 24 hours, making it suitable for once- or twice-daily administration. NPH insulin is available as a recombinant human insulin and is sometimes premixed with short-acting insulin for combined basal and mealtime glucose control.
During the 1980s, many individuals experienced difficulties when transitioning to intermediate-acting insulins, particularly NPH formulations of porcine and bovine insulins. These issues stemmed from variability in absorption and inconsistent glucose control. In response, basal insulin analogues were developed to provide a more stable and predictable absorption profile, leading to improved clinical efficacy and glycemic management.
Animal insulins, including porcine and bovine insulin, were the first clinically used insulins, extracted from the pancreas of animals before the availability of biosynthetic human insulin (insulin human rDNA). Porcine insulin differs from human insulin by a single amino acid, while bovine insulin has three variations, yet both exhibit similar activity at the human insulin receptor. Prior to the introduction of biosynthetic insulin, shark-derived insulin was commonly used in Japan, and certain fish insulins were also found to be effective in humans.
While non-human insulins were widely used, they sometimes triggered allergic reactions, primarily due to impurities and preservatives in insulin preparations. Although the formation of non-neutralizing antibodies was rare, some patients experienced immune responses that affected insulin efficacy. The development of biosynthetic human insulin significantly reduced these issues, leading to its widespread adoption and largely replacing animal-derived insulin in clinical practice.
The expiration of patents for first-generation insulin analogs has facilitated the development of biosimilar insulins, offering potential to improve global insulin access. Despite the essential role of insulin, approximately half of individuals who require it do not have access due to high costs and limited availability. This issue is particularly pronounced in low-income countries, where economic factors can restrict the use of biologic treatments such as insulin. Biosimilar insulins, which have a shorter development timeline of about eight years compared to 12 years for novel biologic drugs, provide a more affordable alternative, with development costs ranging from 10% to 20% of those for new biologics. These products could help improve access to treatment and reduce disparities in insulin availability.
The global market for biologic medicines, including insulin, grew from $46 billion in 2002 to $390 billion in 2020, accounting for 28% of the global pharmaceutical market. In the United States, biologics represented 43% of drug expenditures, totaling $211 billion in 2019, with biosimilar spending expected to rise from $5.2 billion in 2019 to nearly $27 billion by 2024. In Europe, biologics accounted for 34% of medicine spending, reaching US$78.6 billion in 2021, with the biosimilar market valued at $8.8 billion. The global human insulin market was valued at $22.9 billion in 2020, while the biosimilar insulin market stood at $2.3 billion, projected to grow to $5.6 billion by 2027. The introduction of biosimilar insulins has increased market competition, offering a cost-effective alternative that could lower treatment costs and reduce strain on healthcare systems.
Since the approval of the first biosimilar insulin, interest in the products has increased. However, uncertainty regarding their safety and efficacy has slowed their adoption among healthcare professionals. Regulatory agencies, such as the European Medicines Agency (EMA) and the U.S. Food and Drug Administration (FDA), have established approval pathways to ensure biosimilar insulins meet the same quality, safety, and efficacy standards as reference products.
As of 2025, there are three commercially available biosimilar insulins. They are insulin glargine-yfgn, insulin glargine-aglr, and insulin aspart-szjj. Insulin glargine-yfgn is marketed under the name Semglee, and reveived FDA approval in July 2021, but development began before that. The approval was granted to Mylan, which was merged with another company into Viatris in 2020. The second approved biosimilar insulin, insulin glargine-aglr, was approved by the FDA in December 2021 to be produced by Lilly under the name Rezvoglar. In February, 2025, the FDA approved the very first short-acting biosimilar insulin, insulin aspart szjj. It is manufactured by Viatris and sold under the name Merilog.
It is of note that although the name of insulin lispro-aabc, which is marketed as Lyumjev by Lilly, is similar to the names of biosimilars, it is not a biosimilar insulin. Insulin lispro-aabc is simply a faster formulation of insulin lispro.
Before biosynthetic human recombinant analogues became available, porcine insulin was chemically modified to create human insulin. These semisynthetic insulins were produced by altering amino acid side chains at the N-terminus and C-terminus to modify absorption, distribution, metabolism, and excretion (ADME) characteristics. Novo Nordisk developed one such method by enzymatically converting porcine insulin into human insulin by replacing the single differing amino acid. Unmodified human and porcine insulins naturally form hexamers with zinc, requiring dissociation into monomers before binding to insulin receptors. This delays insulin activity when injected subcutaneously, making it less effective for postprandial glucose control.
Zinc-complexed insulins continued to be used for slow-release basal support, covering approximately 50% of daily insulin needs, while mealtime insulin made up the remaining half. The development of monomeric insulins addressed the limitations of hexameric formulations, ensuring faster absorption and better glycemic control. As research progressed, insulin analogues with enhanced receptor binding, extended duration, and improved stability became standard in modern diabetes treatment, reducing variability in glucose levels and lowering the risk of hypoglycemia.
The development of insulin therapy has progressed significantly since the early 20th century, starting with animal-derived insulins. In 1922, Frederick Banting and Charles Best successfully used bovine insulin extract to treat humans for the first time. This breakthrough led to the commercial production of bovine insulin in 1923 by Eli Lilly and Company. That same year, Hans Christian Hagedorn founded the Nordisk Insulinlaboratorium in Denmark, which later became Novo Nordisk. In 1926, Nordisk received a Danish charter to produce insulin as a non-profit entity. In 1936, Canadian researchers D.M. Scott and A.M. Fisher developed a zinc insulin mixture, which was licensed to Novo. During this time, Hagedorn discovered that adding protamine to insulin could prolong its action, which led to the development of Neutral Protamine Hagedorn (NPH) insulin in 1946. NPH insulin was marketed by Nordisk in 1950. By 1953, Novo also developed Lente insulin by adding zinc to porcine and bovine insulins, resulting in a longer-acting form.
A significant advancement in insulin production occurred in 1978 when Genentech developed the biosynthesis of recombinant human insulin using Escherichia coli bacteria and recombinant DNA technology. This allowed for the production of insulin identical to that produced by the human pancreas. In 1981, Novo Nordisk chemically and enzymatically converted porcine insulin into human insulin. Genentech's synthetic human insulin, produced in partnership with Eli Lilly, was approved by the U.S. Food and Drug Administration in 1982. Lilly's biosynthetic recombinant insulin, branded as Humulin, was introduced in 1983. In 1985, Axel Ullrich sequenced the human insulin receptor, further enhancing the understanding of insulin's biological mechanisms. By 1988, Novo Nordisk produced synthetic recombinant human insulin, which further improved insulin availability and consistency.
The development of insulin analogues began with Humalog (insulin lispro), a short-acting insulin analogue developed by Eli Lilly, which was approved by the FDA in 1996. Humalog was designed to be absorbed more quickly than regular insulin, offering improved flexibility in meal timing and postprandial glucose control. In 2000, Lantus (insulin glargine) was approved by the FDA and the European Medicines Agency (EMA). Lantus is a long-acting insulin analogue designed to provide a steady basal level of insulin throughout the day, typically lasting up to 24 hours, thereby reducing the need for multiple daily injections. In 2004, Apidra (insulin glulisine), another short-acting insulin analog, was approved by Sanofi-Aventis to improve postprandial glucose control.
In 2005, Levemir (insulin detemir), developed by Novo Nordisk, was approved for clinical use. Levemir is a long-acting insulin analogue similar to Lantus but with a slightly shorter duration of action. It provides stable basal insulin coverage with a reduced risk of hypoglycemia compared to older insulins.
As of 2025, many companies are researching and manufacturing new insulin analogues. These insulins are usually designed to be either ultra-short-acting or ultra-long-acting. Insulin degludec, an ultra-long-acting insulin analog, was developed by Novo Nordisk and approved by the FDA in 2015. Insulin degludec has an extended duration of action, lasting up to 42 hours, offering greater flexibility in dosing schedules.
In March 2024, insulin icodec was approved for medical use in Canada. The same month, the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) issued a positive opinion, recommending the granting of marketing authorization for Awiqli, under which insulin icodec is marketed. Following the CHMP's recommendation, insulin icodec was approved for medical use in the European Union in May 2024. Insulin icodec has a plasma half-life more than eight days (compared to 25 hours of the previous longest-acting insulin analogue insulin degludec), making it a once-weekly basal insulin.
Insulin efsitora alfa is an experimental insulin analogue developed by Eli Lilly for the treatment of diabetes. Its glycemic control and safety were found to be similar to insulin degludec in a phase II clinical trial.
NNC2215 is a bioengineered glucose-sensitive insulin analogue developed by Novo Nordisk researchers. The drug is designed to adjust its activity based on blood glucose levels, reducing insulin sensitivity when glucose concentrations are low, thereby lowering the risk of hypoglycemia. It also provides more stable blood sugar control by responding dynamically to fluctuations in glucose levels. A study on NNC2215 was published in the journal Nature on October 16, 2024, describing its potential as a major advancement in diabetes treatment and the role of protein engineering in future medicine. The development of glucose-sensitive insulin has been an area of interest in diabetes research since 1979, aiming to address blood sugar fluctuations. Several previous attempts have been made to create glucose-responsive insulin, with varying degrees of success.
Since 1996, seven novel insulin analogues have been approved. Three short-acting and four long-acting analogues have been made, while one short-acting lispro modification has been produced. Since 2021, three insulin biosimilars have been approved, two of which are long-acting and one of which is short-acting.
In 2007, a report from Germany's Institute for Quality and Cost Effectiveness in the Health Care Sector (IQWiG) concluded that there was insufficient evidence to support the superiority of short-acting insulin analogues over synthetic human insulin for the treatment of adult patients with type 1 diabetes. Many of the studies reviewed were criticized for being too small to provide statistically reliable results, and notably, none were blinded.
McDermott, Michael T. (2009). Endocrine secrets. Secrets series (5th ed.). Philadelphia, PA: Mosby/Elsevier. ISBN 978-0-323-05885-8. 978-0-323-05885-8
Mayer, John P.; Zhang, Faming; DiMarchi, Richard D. (January 2007). "Insulin structure and function". Peptide Science. 88 (5): 687–713. doi:10.1002/bip.20734. ISSN 0006-3525. PMID 17410596. https://onlinelibrary.wiley.com/doi/10.1002/bip.20734
Hirsch, Irl B. (13 January 2005). "Insulin Analogues". New England Journal of Medicine. 352 (2): 174–183. doi:10.1056/NEJMra040832. ISSN 0028-4793. PMID 15647580. http://nejm.org/doi/abs/10.1056/NEJMra040832
Mathieu, Chantal; Gillard, Pieter; Benhalima, Katrien (July 2017). "Insulin analogues in type 1 diabetes mellitus: getting better all the time". Nature Reviews Endocrinology. 13 (7): 385–399. doi:10.1038/nrendo.2017.39. PMID 28429780. https://pubmed.ncbi.nlm.nih.gov/28429780/
"Insulin Analogs". Diabetes Teaching Center. Retrieved 10 March 2025. https://diabetesteachingcenter.ucsf.edu/about-diabetes/type-2-diabetes/types-insulin-use-type-2-diabetes/insulin-analogs
"Insulin Analogs". Diabetes Teaching Center. Retrieved 10 March 2025. https://diabetesteachingcenter.ucsf.edu/about-diabetes/type-2-diabetes/types-insulin-use-type-2-diabetes/insulin-analogs
Mahoney, Brian A; Smith, Willard AD; Lo, Dorothy; Tsoi, Keith; Tonelli, Marcello; Clase, Catherine (20 April 2005). "Emergency interventions for hyperkalaemia". Cochrane Database of Systematic Reviews. 2016 (9). Wiley: CD003235. doi:10.1002/14651858.cd003235.pub2. ISSN 1465-1858. PMC 6457842. PMID 15846652. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457842
Hartman, I. (7 July 2008). "Insulin Analogs: Impact on Treatment Success, Satisfaction, Quality of Life, and Adherence". Clinical Medicine & Research. 6 (2): 54–67. doi:10.3121/cmr.2008.793. ISSN 1539-4182. PMC 2572551. PMID 18801953. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572551
Hartman, I. (7 July 2008). "Insulin Analogs: Impact on Treatment Success, Satisfaction, Quality of Life, and Adherence". Clinical Medicine & Research. 6 (2): 54–67. doi:10.3121/cmr.2008.793. ISSN 1539-4182. PMC 2572551. PMID 18801953. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572551
Burge, Mark R; Rassam, Amer G; Schade, David S (1 October 1998). "Lispro Insulin: Benefits and Limitations". Trends in Endocrinology and Metabolism. 9 (8): 337–341. doi:10.1016/S1043-2760(98)00083-6. PMID 18406299. https://sciencedirect.com/science/article/abs/pii/S1043276098000836
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
Haahr H, Heise T (September 2014). "A review of the pharmacological properties of insulin degludec and their clinical relevance". Clinical Pharmacokinetics. 53 (9): 787–800. doi:10.1007/s40262-014-0165-y. PMC 4156782. PMID 25179915. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156782
Kjeldsen TB, Hubálek F, Hjørringgaard CU, Tagmose TM, Nishimura E, Stidsen CE, Porsgaard T, Fledelius C, Refsgaard HH, Gram-Nielsen S, Naver H, Pridal L, Hoeg-Jensen T, Jeppesen CB, Manfè V, Ludvigsen S, Lautrup-Larsen I, Madsen P (July 2021). "Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans". Journal of Medicinal Chemistry. 64 (13): 8942–8950. doi:10.1021/acs.jmedchem.1c00257. PMID 33944562. S2CID 233718893. https://doi.org/10.1021%2Facs.jmedchem.1c00257
"Tresiba (insulin degludec) FDA Approval History". Drugs.com. Retrieved 10 March 2025. https://drugs.com/history/tresiba.html
McDermott, Michael T. (2009). Endocrine secrets. Secrets series (5th ed.). Philadelphia, PA: Mosby/Elsevier. ISBN 978-0-323-05885-8. 978-0-323-05885-8
McDermott, Michael T. (2009). Endocrine secrets. Secrets series (5th ed.). Philadelphia, PA: Mosby/Elsevier. ISBN 978-0-323-05885-8. 978-0-323-05885-8
British national formulary : BNF 69 (69th ed.). British Medical Association. 2015. p. 464472. ISBN 9780857111562. 9780857111562
McDermott, Michael T. (2009). Endocrine secrets. Secrets series (5th ed.). Philadelphia, PA: Mosby/Elsevier. ISBN 978-0-323-05885-8. 978-0-323-05885-8
McDermott, Michael T. (2009). Endocrine secrets. Secrets series (5th ed.). Philadelphia, PA: Mosby/Elsevier. ISBN 978-0-323-05885-8. 978-0-323-05885-8
Hartman, I. (7 July 2008). "Insulin Analogs: Impact on Treatment Success, Satisfaction, Quality of Life, and Adherence". Clinical Medicine & Research. 6 (2): 54–67. doi:10.3121/cmr.2008.793. ISSN 1539-4182. PMC 2572551. PMID 18801953. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572551
McDermott, Michael T. (2009). Endocrine secrets. Secrets series (5th ed.). Philadelphia, PA: Mosby/Elsevier. ISBN 978-0-323-05885-8. 978-0-323-05885-8
McDermott, Michael T. (2009). Endocrine secrets. Secrets series (5th ed.). Philadelphia, PA: Mosby/Elsevier. ISBN 978-0-323-05885-8. 978-0-323-05885-8
Mathieu, Chantal; Gillard, Pieter; Benhalima, Katrien (July 2017). "Insulin analogues in type 1 diabetes mellitus: getting better all the time". Nature Reviews Endocrinology. 13 (7): 385–399. doi:10.1038/nrendo.2017.39. PMID 28429780. https://pubmed.ncbi.nlm.nih.gov/28429780/
Mathieu, Chantal; Gillard, Pieter; Benhalima, Katrien (July 2017). "Insulin analogues in type 1 diabetes mellitus: getting better all the time". Nature Reviews Endocrinology. 13 (7): 385–399. doi:10.1038/nrendo.2017.39. PMID 28429780. https://pubmed.ncbi.nlm.nih.gov/28429780/
Hemmings, Hugh C.; Egan, Talmage D., eds. (2019). "36 - Endocrine Pharmacology". Pharmacology and physiology for anesthesia: foundations and clinical application (2nd ed.). Philadelphia, PA: Elsevier. ISBN 978-0-323-48110-6. 978-0-323-48110-6
Home, P. D. (September 2012). "The pharmacokinetics and pharmacodynamics of rapid-acting insulin analogues and their clinical consequences". Diabetes, Obesity and Metabolism. 14 (9): 780–788. doi:10.1111/j.1463-1326.2012.01580.x. ISSN 1462-8902. PMID 22321739. https://dom-pubs.pericles-prod.literatumonline.com/doi/10.1111/j.1463-1326.2012.01580.x
Hemmings, Hugh C.; Egan, Talmage D., eds. (2019). "36 - Endocrine Pharmacology". Pharmacology and physiology for anesthesia: foundations and clinical application (2nd ed.). Philadelphia, PA: Elsevier. ISBN 978-0-323-48110-6. 978-0-323-48110-6
Hirsch, Irl B. (13 January 2005). "Insulin Analogues". New England Journal of Medicine. 352 (2): 174–183. doi:10.1056/NEJMra040832. ISSN 0028-4793. PMID 15647580. http://nejm.org/doi/abs/10.1056/NEJMra040832
Hemmings, Hugh C.; Egan, Talmage D., eds. (2019). "36 - Endocrine Pharmacology". Pharmacology and physiology for anesthesia: foundations and clinical application (2nd ed.). Philadelphia, PA: Elsevier. ISBN 978-0-323-48110-6. 978-0-323-48110-6
Noble SL, Johnston E, Walton B (January 1998). "Insulin lispro: a fast-acting insulin analog". American Family Physician. 57 (2): 279–86, 289–92. PMID 9456992. Archived from the original on 29 September 2007. Retrieved 5 September 2007. https://web.archive.org/web/20070929095848/http://aafp.org/afp/980115ap/noble.html
Noble SL, Johnston E, Walton B (January 1998). "Insulin lispro: a fast-acting insulin analog". American Family Physician. 57 (2): 279–86, 289–92. PMID 9456992. Archived from the original on 29 September 2007. Retrieved 5 September 2007. https://web.archive.org/web/20070929095848/http://aafp.org/afp/980115ap/noble.html
Home, P. D. (September 2012). "The pharmacokinetics and pharmacodynamics of rapid-acting insulin analogues and their clinical consequences". Diabetes, Obesity and Metabolism. 14 (9): 780–788. doi:10.1111/j.1463-1326.2012.01580.x. ISSN 1462-8902. PMID 22321739. https://dom-pubs.pericles-prod.literatumonline.com/doi/10.1111/j.1463-1326.2012.01580.x
Hemmings, Hugh C.; Egan, Talmage D., eds. (2019). "36 - Endocrine Pharmacology". Pharmacology and physiology for anesthesia: foundations and clinical application (2nd ed.). Philadelphia, PA: Elsevier. ISBN 978-0-323-48110-6. 978-0-323-48110-6
Turner JR (2010). New Drug Development: An Introduction to Clinical Trials: Second Edition. Springer Science & Business Media. p. 32. ISBN 9781441964182. Archived from the original on 20 April 2021. Retrieved 11 September 2020. 9781441964182
"Apidra- insulin glulisine injection, solution; Apidra Solostar- insulin glulisine injection, solution". DailyMed. 25 July 2023. Retrieved 10 August 2024. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=e7af6a7a-8046-4fb4-9979-4ec4230b23aa
Home, P. D. (September 2012). "The pharmacokinetics and pharmacodynamics of rapid-acting insulin analogues and their clinical consequences". Diabetes, Obesity and Metabolism. 14 (9): 780–788. doi:10.1111/j.1463-1326.2012.01580.x. ISSN 1462-8902. PMID 22321739. https://dom-pubs.pericles-prod.literatumonline.com/doi/10.1111/j.1463-1326.2012.01580.x
"Drug Approval Package: Apidra (Insulin Glulisine [rDNA Origin]) NDA #021629". U.S. Food and Drug Administration (FDA). Retrieved 10 August 2024. https://accessdata.fda.gov/drugsatfda_docs/nda/2004/21-629_Apidra.cfm
Hemmings, Hugh C.; Egan, Talmage D., eds. (2019). "36 - Endocrine Pharmacology". Pharmacology and physiology for anesthesia: foundations and clinical application (2nd ed.). Philadelphia, PA: Elsevier. ISBN 978-0-323-48110-6. 978-0-323-48110-6
Home, P. D. (September 2012). "The pharmacokinetics and pharmacodynamics of rapid-acting insulin analogues and their clinical consequences". Diabetes, Obesity and Metabolism. 14 (9): 780–788. doi:10.1111/j.1463-1326.2012.01580.x. ISSN 1462-8902. PMID 22321739. https://dom-pubs.pericles-prod.literatumonline.com/doi/10.1111/j.1463-1326.2012.01580.x
Hemmings, Hugh C.; Egan, Talmage D., eds. (2019). "36 - Endocrine Pharmacology". Pharmacology and physiology for anesthesia: foundations and clinical application (2nd ed.). Philadelphia, PA: Elsevier. ISBN 978-0-323-48110-6. 978-0-323-48110-6
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
Kjeldsen TB, Hubálek F, Hjørringgaard CU, Tagmose TM, Nishimura E, Stidsen CE, Porsgaard T, Fledelius C, Refsgaard HH, Gram-Nielsen S, Naver H, Pridal L, Hoeg-Jensen T, Jeppesen CB, Manfè V, Ludvigsen S, Lautrup-Larsen I, Madsen P (July 2021). "Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans". Journal of Medicinal Chemistry. 64 (13): 8942–8950. doi:10.1021/acs.jmedchem.1c00257. PMID 33944562. S2CID 233718893. https://doi.org/10.1021%2Facs.jmedchem.1c00257
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MM, Ramadan HA, Saini KS, Redwan EM (October 2014). "Cell factories for insulin production". Microbial Cell Factories. 13: 141. doi:10.1186/s12934-014-0141-0. PMC 4203937. PMID 25270715. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203937
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
"Insulin Glargine Monograph for Professionals". Drugs.com. AHFS. Archived from the original on 5 December 2020. Retrieved 23 December 2018. https://drugs.com/monograph/insulin-glargine.html
Cunningham, Abigail M.; Freeman, Andrew M. (2025), "Glargine Insulin", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 32491688, retrieved 10 March 2025 https://ncbi.nlm.nih.gov/books/NBK557756/#:~:text=Insulin%20glargine%20is%20a%20synthetic,improve%20and%20maintain%20glycemic%20control.
"Toujeo SoloStar Uses, Dosage & Side Effects". Drugs.com. Retrieved 10 March 2025. https://drugs.com/toujeo.html
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MM, Ramadan HA, Saini KS, Redwan EM (October 2014). "Cell factories for insulin production". Microbial Cell Factories. 13: 141. doi:10.1186/s12934-014-0141-0. PMC 4203937. PMID 25270715. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203937
Klein O, Lynge J, Endahl L, Damholt B, Nosek L, Heise T (May 2007). "Albumin-bound basal insulin analogues (insulin detemir and NN344): comparable time-action profiles but less variability than insulin glargine in type 2 diabetes". Diabetes, Obesity & Metabolism. 9 (3): 290–299. doi:10.1111/j.1463-1326.2006.00685.x. PMID 17391154. S2CID 23810204. /wiki/Doi_(identifier)
Klein O, Lynge J, Endahl L, Damholt B, Nosek L, Heise T (May 2007). "Albumin-bound basal insulin analogues (insulin detemir and NN344): comparable time-action profiles but less variability than insulin glargine in type 2 diabetes". Diabetes, Obesity & Metabolism. 9 (3): 290–299. doi:10.1111/j.1463-1326.2006.00685.x. PMID 17391154. S2CID 23810204. /wiki/Doi_(identifier)
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
"Summary Basis of Decision for Awiqli". Health Canada. https://dhpp.hpfb-dgpsa.ca/review-documents/resource/SBD1734642660051
Kjeldsen TB, Hubálek F, Hjørringgaard CU, Tagmose TM, Nishimura E, Stidsen CE, Porsgaard T, Fledelius C, Refsgaard HH, Gram-Nielsen S, Naver H, Pridal L, Hoeg-Jensen T, Jeppesen CB, Manfè V, Ludvigsen S, Lautrup-Larsen I, Madsen P (July 2021). "Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans". Journal of Medicinal Chemistry. 64 (13): 8942–8950. doi:10.1021/acs.jmedchem.1c00257. PMID 33944562. S2CID 233718893. https://doi.org/10.1021%2Facs.jmedchem.1c00257
Kjeldsen TB, Hubálek F, Hjørringgaard CU, Tagmose TM, Nishimura E, Stidsen CE, Porsgaard T, Fledelius C, Refsgaard HH, Gram-Nielsen S, Naver H, Pridal L, Hoeg-Jensen T, Jeppesen CB, Manfè V, Ludvigsen S, Lautrup-Larsen I, Madsen P (July 2021). "Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans". Journal of Medicinal Chemistry. 64 (13): 8942–8950. doi:10.1021/acs.jmedchem.1c00257. PMID 33944562. S2CID 233718893. https://doi.org/10.1021%2Facs.jmedchem.1c00257
"Summary Basis of Decision for Awiqli". Health Canada. https://dhpp.hpfb-dgpsa.ca/review-documents/resource/SBD1734642660051
Nishimura E, Pridal L, Glendorf T, Hansen BF, Hubálek F, Kjeldsen T, Kristensen NR, Lützen A, Lyby K, Madsen P, Pedersen TÅ, Ribel-Madsen R, Stidsen CE, Haahr H (August 2021). "Molecular and pharmacological characterization of insulin icodec: a new basal insulin analog designed for once-weekly dosing". BMJ Open Diabetes Research & Care. 9 (1): e002301. doi:10.1136/bmjdrc-2021-002301. PMC 8378355. PMID 34413118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378355
Nishimura E, Pridal L, Glendorf T, Hansen BF, Hubálek F, Kjeldsen T, Kristensen NR, Lützen A, Lyby K, Madsen P, Pedersen TÅ, Ribel-Madsen R, Stidsen CE, Haahr H (August 2021). "Molecular and pharmacological characterization of insulin icodec: a new basal insulin analog designed for once-weekly dosing". BMJ Open Diabetes Research & Care. 9 (1): e002301. doi:10.1136/bmjdrc-2021-002301. PMC 8378355. PMID 34413118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378355
"Insulin Aspart Monograph for Professionals". Drugs.com. American Society of Health-System Pharmacists. Archived from the original on 6 March 2019. Retrieved 3 March 2019. https://drugs.com/monograph/insulin-aspart.html
"Insulin Lispro Monograph for Professionals". Drugs.com. American Society of Health-System Pharmacists. Archived from the original on 6 March 2019. Retrieved 3 March 2019. https://drugs.com/monograph/insulin-lispro.html
Ghazavi MK, Johnston GA (May–June 2011). "Insulin allergy". Clinics in Dermatology. 29 (3): 300–5. doi:10.1016/j.clindermatol.2010.11.009. PMID 21496738. /wiki/Doi_(identifier)
Subiabre M, Silva L, Toledo F, Paublo M, López MA, Boric MP, Sobrevia L (September 2018). "Insulin therapy and its consequences for the mother, foetus, and newborn in gestational diabetes mellitus". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1864 (9 Pt B): 2949–2956. doi:10.1016/j.bbadis.2018.06.005. PMID 29890222. S2CID 48362789. https://doi.org/10.1016%2Fj.bbadis.2018.06.005
"Insulin Aspart Monograph for Professionals". Drugs.com. American Society of Health-System Pharmacists. Archived from the original on 6 March 2019. Retrieved 3 March 2019. https://drugs.com/monograph/insulin-aspart.html
Redwan, Elrashdy M.; Linjawi, Moustafa H.; Uversky, Vladimir N. (17 March 2016). "Looking at the carcinogenicity of human insulin analogues via the intrinsic disorder prism". Scientific Reports. 6 (1): 23320. Bibcode:2016NatSR...623320R. doi:10.1038/srep23320. ISSN 2045-2322. PMC 4794765. PMID 26983499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794765
Szablewski, Leszek (October 2014). "Diabetes mellitus: influences on cancer risk". Diabetes/Metabolism Research and Reviews. 30 (7): 543–553. doi:10.1002/dmrr.2573. ISSN 1520-7552. PMID 25044584. https://onlinelibrary.wiley.com/doi/10.1002/dmrr.2573
Seewoodhary, Jason; Bain, Stephen C (1 September 2011). "Diabetes, diabetes therapies and cancer: what's the link?". The British Journal of Diabetes & Vascular Disease. 11 (5): 235–238. doi:10.1177/1474651411421024. ISSN 1474-6514. https://journals.sagepub.com/doi/10.1177/1474651411421024
Redwan, Elrashdy M.; Linjawi, Moustafa H.; Uversky, Vladimir N. (17 March 2016). "Looking at the carcinogenicity of human insulin analogues via the intrinsic disorder prism". Scientific Reports. 6 (1): 23320. Bibcode:2016NatSR...623320R. doi:10.1038/srep23320. ISSN 2045-2322. PMC 4794765. PMID 26983499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794765
"Insulin Human". The American Society of Health-System Pharmacists. Archived from the original on 22 October 2016. Retrieved 8 January 2017. https://drugs.com/monograph/insulin-human.html
Owens DR (1986). Human Insulin: Clinical Pharmacological Studies in Normal Man. Springer Science & Business Media. pp. 134–136. ISBN 9789400941618. Archived from the original on 18 January 2017. 9789400941618
British national formulary : BNF 69 (69th ed.). British Medical Association. 2015. p. 464472. ISBN 9780857111562. 9780857111562
Owens DR, Bolli GB. 2008 Beyond the era of NPH insulin--long-acting insulin analogs: chemistry, comparative pharmacology, and clinical application. Diabetes Technol Ther. Oct;10(5):333-49.
Owens DR, Bolli GB. 2008 Beyond the era of NPH insulin--long-acting insulin analogs: chemistry, comparative pharmacology, and clinical application. Diabetes Technol Ther. Oct;10(5):333-49.
Jonassen I, Havelund S, Hoeg-Jensen T, Steensgaard DB, Wahlund PO, Ribel U. 2012 Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm Res. 2012 Aug;29(8):2104-14.
Zinman B. 2013 Newer insulin analogs: advances in basal insulin replacement. Diabetes Obes. Metab. 2013 Mar;15 Suppl 1:6-10
Owens DR, Bolli GB. 2008 Beyond the era of NPH insulin--long-acting insulin analogs: chemistry, comparative pharmacology, and clinical application. Diabetes Technol Ther. Oct;10(5):333-49.
Jonassen I, Havelund S, Hoeg-Jensen T, Steensgaard DB, Wahlund PO, Ribel U. 2012 Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm Res. 2012 Aug;29(8):2104-14.
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
Rosenfeld, Louis (1 December 2002). "Insulin: Discovery and Controversy". Clinical Chemistry. 48 (12): 2270–2288. doi:10.1093/clinchem/48.12.2270. ISSN 0009-9147. PMID 12446492. https://academic.oup.com/clinchem/article/48/12/2270/5642437
Richter, Bernd; Neises, Gudrun (24 January 2005). Cochrane Metabolic and Endocrine Disorders Group (ed.). "'Human' insulin versus animal insulin in people with diabetes mellitus". Cochrane Database of Systematic Reviews. 2010 (1): CD003816. doi:10.1002/14651858.CD003816.pub2. PMC 8406912. PMID 15674916. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406912
Richter, Bernd; Neises, Gudrun (24 January 2005). Cochrane Metabolic and Endocrine Disorders Group (ed.). "'Human' insulin versus animal insulin in people with diabetes mellitus". Cochrane Database of Systematic Reviews. 2010 (1): CD003816. doi:10.1002/14651858.CD003816.pub2. PMC 8406912. PMID 15674916. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406912
Conlon, J.Michael (July 2001). "Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships". Peptides. 22 (7): 1183–1193. doi:10.1016/S0196-9781(01)00423-5. PMID 11445250. https://linkinghub.elsevier.com/retrieve/pii/S0196978101004235
Nagasawa, Kakuma (1 March 1968). "Use of Fish and Whale Insulin as Drugs in Japan". Journal of AOAC International. 51 (2): 326–329. doi:10.1093/jaoac/51.2.326. ISSN 0004-5756. https://academic.oup.com/jaoac/article/51/2/326-329/5720924
Richter, Bernd; Neises, Gudrun (24 January 2005). Cochrane Metabolic and Endocrine Disorders Group (ed.). "'Human' insulin versus animal insulin in people with diabetes mellitus". Cochrane Database of Systematic Reviews. 2010 (1): CD003816. doi:10.1002/14651858.CD003816.pub2. PMC 8406912. PMID 15674916. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406912
Richter, Bernd; Neises, Gudrun (24 January 2005). Cochrane Metabolic and Endocrine Disorders Group (ed.). "'Human' insulin versus animal insulin in people with diabetes mellitus". Cochrane Database of Systematic Reviews. 2010 (1): CD003816. doi:10.1002/14651858.CD003816.pub2. PMC 8406912. PMID 15674916. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406912
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
Agency, European Medicines (5 May 2017). "Biosimilar medicines: Overview | European Medicines Agency (EMA)". www.ema.europa.eu. Retrieved 17 March 2025. https://www.ema.europa.eu/en/human-regulatory-overview/biosimilar-medicines-overview
Research, Center for Drug Evaluation and (24 April 2020). "Scientific Considerations in Demonstrating Biosimilarity to a Reference Product". www.fda.gov. Retrieved 17 March 2025. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/scientific-considerations-demonstrating-biosimilarity-reference-product
Heinemann, Lutz; Davies, Melanie; Home, Philip; Forst, Thomas; Vilsbøll, Tina; Schnell, Oliver (11 July 2022). "Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials". Journal of Diabetes Science and Technology. 17 (6): 1649–1661. doi:10.1177/19322968221105864. ISSN 1932-2968. PMC 10658691. PMID 35818669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658691
Heinemann, Lutz; Davies, Melanie; Home, Philip; Forst, Thomas; Vilsbøll, Tina; Schnell, Oliver (11 July 2022). "Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials". Journal of Diabetes Science and Technology. 17 (6): 1649–1661. doi:10.1177/19322968221105864. ISSN 1932-2968. PMC 10658691. PMID 35818669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658691
Nick, C (2012). "The US Biosimilars Act: Challenges Facing Regulatory Approval". Pharm Med. 26 (3): 145–152. doi:10.1007/bf03262388. S2CID 14604362. /wiki/Doi_(identifier)
Heinemann, Lutz; Davies, Melanie; Home, Philip; Forst, Thomas; Vilsbøll, Tina; Schnell, Oliver (11 July 2022). "Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials". Journal of Diabetes Science and Technology. 17 (6): 1649–1661. doi:10.1177/19322968221105864. ISSN 1932-2968. PMC 10658691. PMID 35818669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658691
Basu, Sanjay; Yudkin, John S; Kehlenbrink, Sylvia; Davies, Justine I; Wild, Sarah H; Lipska, Kasia J; Sussman, Jeremy B; Beran, David (January 2019). "Estimation of global insulin use for type 2 diabetes, 2018–30: a microsimulation analysis". The Lancet Diabetes & Endocrinology. 7 (1): 25–33. doi:10.1016/S2213-8587(18)30303-6. hdl:20.500.11820/31689153-c908-4a3a-b797-a6b1a73badfe. PMID 30470520. https://linkinghub.elsevier.com/retrieve/pii/S2213858718303036
Baumgart, Daniel C.; Misery, Laurent; Naeyaert, Sue; Taylor, Peter C. (28 March 2019). "Biological Therapies in Immune-Mediated Inflammatory Diseases: Can Biosimilars Reduce Access Inequities?". Frontiers in Pharmacology. 10. doi:10.3389/fphar.2019.00279. ISSN 1663-9812. PMC 6447826. PMID 30983996. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447826
Ewen, Margaret; Joosse, Huibert-Jan; Beran, David; Laing, Richard (June 2019). "Insulin prices, availability and affordability in 13 low-income and middle-income countries". BMJ Global Health. 4 (3): e001410. doi:10.1136/bmjgh-2019-001410. ISSN 2059-7908. PMC 6570978. PMID 31263585. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570978
Agbogbo, Frank K; Ecker, Dawn M; Farrand, Allison; Han, Kevin; Khoury, Antoine; Martin, Aaron; McCool, Jesse; Rasche, Ulrike; Rau, Tiffany D; Schmidt, David; Sha, Ma; Treuheit, Nicholas (1 October 2019). "Current perspectives on biosimilars". Journal of Industrial Microbiology and Biotechnology. 46 (9–10): 1297–1311. doi:10.1007/s10295-019-02216-z. ISSN 1476-5535. PMC 6791907. PMID 31317293. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6791907
Heinemann, Lutz; Davies, Melanie; Home, Philip; Forst, Thomas; Vilsbøll, Tina; Schnell, Oliver (11 July 2022). "Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials". Journal of Diabetes Science and Technology. 17 (6): 1649–1661. doi:10.1177/19322968221105864. ISSN 1932-2968. PMC 10658691. PMID 35818669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658691
IMS Institute for Healthcare Informatics. Delivering on the Potential of Biosimilar Medicines: The Role of Functioning Competitive Markets Introduction. 2016. https://www.medicinesforeurope.com/wp-content/uploads/2016/03/IMS-Institute-Biosimilar-Report-March-2016-FINAL.pdf
Heinemann, Lutz; Davies, Melanie; Home, Philip; Forst, Thomas; Vilsbøll, Tina; Schnell, Oliver (11 July 2022). "Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials". Journal of Diabetes Science and Technology. 17 (6): 1649–1661. doi:10.1177/19322968221105864. ISSN 1932-2968. PMC 10658691. PMID 35818669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658691
The IQVIA Institute for Human Data Science. The Impact of Biosimilar Competition in Europe. 2021.
https://www.iqvia.com/-/media/iqvia/pdfs/library/white-papers/the-impact-of-biosimilar-competition-in-europe-2021.pdf
Heinemann, Lutz; Davies, Melanie; Home, Philip; Forst, Thomas; Vilsbøll, Tina; Schnell, Oliver (11 July 2022). "Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials". Journal of Diabetes Science and Technology. 17 (6): 1649–1661. doi:10.1177/19322968221105864. ISSN 1932-2968. PMC 10658691. PMID 35818669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658691
Heinemann, Lutz; Davies, Melanie; Home, Philip; Forst, Thomas; Vilsbøll, Tina; Schnell, Oliver (11 July 2022). "Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials". Journal of Diabetes Science and Technology. 17 (6): 1649–1661. doi:10.1177/19322968221105864. ISSN 1932-2968. PMC 10658691. PMID 35818669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658691
Kabir, Eva Rahman; Moreino, Shannon Sherwin; Sharif Siam, Mohammad Kawsar (24 August 2019). "The Breakthrough of Biosimilars: A Twist in the Narrative of Biological Therapy". Biomolecules. 9 (9): 410. doi:10.3390/biom9090410. ISSN 2218-273X. PMC 6770099. PMID 31450637. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770099
Agency, European Medicines (5 May 2017). "Biosimilar medicines: Overview | European Medicines Agency (EMA)". www.ema.europa.eu. Retrieved 17 March 2025. https://www.ema.europa.eu/en/human-regulatory-overview/biosimilar-medicines-overview
Research, Center for Drug Evaluation and (24 April 2020). "Scientific Considerations in Demonstrating Biosimilarity to a Reference Product". www.fda.gov. Retrieved 17 March 2025. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/scientific-considerations-demonstrating-biosimilarity-reference-product
Heinemann, Lutz; Davies, Melanie; Home, Philip; Forst, Thomas; Vilsbøll, Tina; Schnell, Oliver (11 July 2022). "Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials". Journal of Diabetes Science and Technology. 17 (6): 1649–1661. doi:10.1177/19322968221105864. ISSN 1932-2968. PMC 10658691. PMID 35818669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658691
Commissioner, Office of the (30 July 2021). "FDA Approves First Interchangeable Biosimilar Insulin Product for Treatment of Diabetes". FDA. Retrieved 17 March 2025. https://www.fda.gov/news-events/press-announcements/fda-approves-first-interchangeable-biosimilar-insulin-product-treatment-diabetes
Commissioner, Office of the (30 July 2021). "FDA Approves First Interchangeable Biosimilar Insulin Product for Treatment of Diabetes". FDA. Retrieved 17 March 2025. https://www.fda.gov/news-events/press-announcements/fda-approves-first-interchangeable-biosimilar-insulin-product-treatment-diabetes
Gough, Paul J. (16 November 2020). "After nearly 60 years, Mylan makes way for Viatris". Pittsburgh Business Times. Retrieved 10 December 2020. https://www.bizjournals.com/pittsburgh/news/2020/11/16/after-nearly-60-years-mylan-makes-way-for-viatris.html
"Rezvoglar Becomes Second Interchangeable Insulin Biosimilar". Center for Biosimilars. 23 November 2022. Retrieved 17 March 2025. https://www.centerforbiosimilars.com/view/rezvoglar-becomes-second-interchangeable-insulin-biosimilar
Commissioner, Office of the (18 February 2025). "FDA Approves First Rapid-Acting Insulin Biosimilar Product for Treatment of Diabetes". FDA. Retrieved 17 March 2025. https://www.fda.gov/news-events/press-announcements/fda-approves-first-rapid-acting-insulin-biosimilar-product-treatment-diabetes
"FDA approves Lyumjev™ (insulin lispro-aabc injection), Lilly's new rapid-acting insulin | Eli Lilly and Company". Eli Lilly and Company. Archived from the original on 29 January 2025. Retrieved 18 March 2025. http://web.archive.org/web/20250129002107/https://investor.lilly.com/news-releases/news-release-details/fda-approves-lyumjevtm-insulin-lispro-aabc-injection-lillys-new
Redwan, Elrashdy M.; Linjawi, Moustafa H.; Uversky, Vladimir N. (17 March 2016). "Looking at the carcinogenicity of human insulin analogues via the intrinsic disorder prism". Scientific Reports. 6 (1): 23320. Bibcode:2016NatSR...623320R. doi:10.1038/srep23320. ISSN 2045-2322. PMC 4794765. PMID 26983499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794765
Redwan, EL-Rashdy M. (30 June 2009). "Animal-Derived Pharmaceutical Proteins". Journal of Immunoassay and Immunochemistry. 30 (3): 262–290. doi:10.1080/15321810903084400. ISSN 1532-1819. PMID 19591041. https://tandfonline.com/doi/abs/10.1080/15321810903084400
Richter, Bernd; Neises, Gudrun (24 January 2005). Cochrane Metabolic and Endocrine Disorders Group (ed.). "'Human' insulin versus animal insulin in people with diabetes mellitus". Cochrane Database of Systematic Reviews. 2010 (1): CD003816. doi:10.1002/14651858.CD003816.pub2. PMC 8406912. PMID 15674916. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406912
Redwan, EL-Rashdy M. (30 June 2009). "Animal-Derived Pharmaceutical Proteins". Journal of Immunoassay and Immunochemistry. 30 (3): 262–290. doi:10.1080/15321810903084400. ISSN 1532-1819. PMID 19591041. https://tandfonline.com/doi/abs/10.1080/15321810903084400
Horuk, R.; Blundell, T. L.; Lazarus, N. R.; Neville, R. W. J.; Stone, D.; Wollmer, A. (August 1980). "A monomeric insulin from the porcupine (Hystrix cristata), an Old World hystricomorph". Nature. 286 (5775): 822–824. Bibcode:1980Natur.286..822H. doi:10.1038/286822a0. ISSN 0028-0836. PMID 6995860. https://nature.com/articles/286822a0
Gingras, Véronique; Taleb, Nadine; Roy-Fleming, Amélie; Legault, Laurent; Rabasa-Lhoret, Rémi (February 2018). "The challenges of achieving postprandial glucose control using closed-loop systems in patients with type 1 diabetes". Diabetes, Obesity and Metabolism. 20 (2): 245–256. doi:10.1111/dom.13052. ISSN 1462-8902. PMC 5810921. PMID 28675686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5810921
Redwan, Elrashdy M.; Linjawi, Moustafa H.; Uversky, Vladimir N. (17 March 2016). "Looking at the carcinogenicity of human insulin analogues via the intrinsic disorder prism". Scientific Reports. 6 (1): 23320. Bibcode:2016NatSR...623320R. doi:10.1038/srep23320. ISSN 2045-2322. PMC 4794765. PMID 26983499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794765
Philips, Jean-Christophe; Scheen, Andre (August 2006). "Insulin detemir in the treatment of type 1 and type 2 diabetes". Vascular Health and Risk Management. 2 (3): 277–283. doi:10.2147/vhrm.2006.2.3.277. ISSN 1176-6344. PMC 1993987. PMID 17326333. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1993987
Horuk, R.; Blundell, T. L.; Lazarus, N. R.; Neville, R. W. J.; Stone, D.; Wollmer, A. (August 1980). "A monomeric insulin from the porcupine (Hystrix cristata), an Old World hystricomorph". Nature. 286 (5775): 822–824. Bibcode:1980Natur.286..822H. doi:10.1038/286822a0. ISSN 0028-0836. PMID 6995860. https://nature.com/articles/286822a0
Redwan, Elrashdy M.; Linjawi, Moustafa H.; Uversky, Vladimir N. (17 March 2016). "Looking at the carcinogenicity of human insulin analogues via the intrinsic disorder prism". Scientific Reports. 6 (1): 23320. Bibcode:2016NatSR...623320R. doi:10.1038/srep23320. ISSN 2045-2322. PMC 4794765. PMID 26983499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794765
Owens, David R. (June 2011). "Insulin Preparations with Prolonged Effect". Diabetes Technology & Therapeutics. 13 (S1): S–5–S-14. doi:10.1089/dia.2011.0068. ISSN 1520-9156. PMID 21668337. https://liebertpub.com/doi/10.1089/dia.2011.0068
Redwan, Elrashdy M.; Linjawi, Moustafa H.; Uversky, Vladimir N. (17 March 2016). "Looking at the carcinogenicity of human insulin analogues via the intrinsic disorder prism". Scientific Reports. 6 (1): 23320. Bibcode:2016NatSR...623320R. doi:10.1038/srep23320. ISSN 2045-2322. PMC 4794765. PMID 26983499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794765
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
"Frederick Banting, Charles Best, James Collip, and John Macleod". Science History Institute. June 2016. Archived from the original on 1 December 2018. Retrieved 22 August 2018. https://sciencehistory.org/historical-profile/frederick-banting-charles-best-james-collip-and-john-macleod
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
"The History of Insulin" (PDF). Karger.com/. Basel, Switzerland: Karger Publishers. Archived from the original (PDF) on 4 March 2016. Retrieved 10 June 2015. https://web.archive.org/web/20160304202218/https://karger.com/ProdukteDB/Katalogteile/isbn3_8055/_83/_53/Insulin_02.pdf
"Insulin 100 years". https://novonordisk.com/about/insulin-100-years.html
Scott, D. A.; Fisher, A. M. (1 November 1938). "The Insulin and the Zinc Content of Normal and Diabetic Pancreas". Journal of Clinical Investigation. 17 (6): 725–728. doi:10.1172/JCI101000. ISSN 0021-9738. PMC 434829. PMID 16694619. http://jci.org/articles/view/101000
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
Saleem, Fatima; Sharma, Ashish (2025), "NPH Insulin", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 31751050, retrieved 10 March 2025 https://ncbi.nlm.nih.gov/books/NBK549860/#:~:text=NPH%20(Neutral%20Protamine%20Hagedorn)%20insulin%20is%20an%20insoluble%20intermediate-,scientist%20name%20Hans%20Christian%20Hagedorn.
Saleem, Fatima; Sharma, Ashish (2025), "NPH Insulin", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 31751050, retrieved 10 March 2025 https://ncbi.nlm.nih.gov/books/NBK549860/#:~:text=NPH%20(Neutral%20Protamine%20Hagedorn)%20insulin%20is%20an%20insoluble%20intermediate-,scientist%20name%20Hans%20Christian%20Hagedorn.
Hallas-Møller, K.; Petersen, K.; Schlichtkrull, J. (1952). "Crystalline and Amorphous Insulin-Zinc Compounds with Prolonged Action". Science. 116 (3015): 394–398. Bibcode:1952Sci...116..394H. doi:10.1126/science.116.3015.394. ISSN 0036-8075. JSTOR 1680777. PMID 12984132. /wiki/Bibcode_(identifier)
Genentech. "Cloning Insulin". Genentech: Breakthrough science. One moment, one day, one person at a time. Retrieved 10 March 2025. https://gene.com/stories/cloning-insulin
Genentech. "Cloning Insulin". Genentech: Breakthrough science. One moment, one day, one person at a time. Retrieved 10 March 2025. https://gene.com/stories/cloning-insulin
"Insulin". Chemical & Engineering News. Retrieved 10 March 2025. https://cen.acs.org/articles/83/i25/Insulin.html
Commissioner, Office of the (9 August 2024). "100 Years of Insulin". FDA. https://fda.gov/about-fda/fda-history-exhibits/100-years-insulin#:~:text=signed%20an%20agreement%20with%20Genentech,that%20derived%20from%20this%20technology.
Ullrich, A.; Bell, J. R.; Chen, E. Y.; Herrera, R.; Petruzzelli, L. M.; Dull, T. J.; Gray, A.; Coussens, L.; Liao, Y.-C.; Tsubokawa, M.; Mason, A.; Seeburg, P. H.; Grunfeld, C.; Rosen, O. M.; Ramachandran, J. (February 1985). "Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes". Nature. 313 (6005): 756–761. Bibcode:1985Natur.313..756U. doi:10.1038/313756a0. ISSN 0028-0836. PMID 2983222. https://nature.com/articles/313756a0
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
Noble SL, Johnston E, Walton B (January 1998). "Insulin lispro: a fast-acting insulin analog". American Family Physician. 57 (2): 279–86, 289–92. PMID 9456992. Archived from the original on 29 September 2007. Retrieved 5 September 2007. https://web.archive.org/web/20070929095848/http://aafp.org/afp/980115ap/noble.html
"Drug Approval Package". accessdata.fda.gov. Archived from the original on 8 February 2025. Retrieved 11 March 2025. http://web.archive.org/web/20250208160300/https://accessdata.fda.gov/drugsatfda_docs/nda/2000/21081_lantus.cfm
"Insulin Glargine Monograph for Professionals". Drugs.com. AHFS. Archived from the original on 5 December 2020. Retrieved 23 December 2018. https://drugs.com/monograph/insulin-glargine.html
Cunningham, Abigail M.; Freeman, Andrew M. (2025), "Glargine Insulin", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 32491688, retrieved 10 March 2025 https://ncbi.nlm.nih.gov/books/NBK557756/#:~:text=Insulin%20glargine%20is%20a%20synthetic,improve%20and%20maintain%20glycemic%20control.
"Drug Approval Package: Apidra (Insulin Glulisine [rDNA Origin]) NDA #021629". U.S. Food and Drug Administration (FDA). Retrieved 10 August 2024. https://accessdata.fda.gov/drugsatfda_docs/nda/2004/21-629_Apidra.cfm
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
"Drug Approval Package". www.accessdata.fda.gov. Archived from the original on 28 February 2025. Retrieved 18 March 2025. http://web.archive.org/web/20250228201310/https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021-536_LevemirTOC.cfm
Mathieu, Chantal; Gillard, Pieter; Benhalima, Katrien (July 2017). "Insulin analogues in type 1 diabetes mellitus: getting better all the time". Nature Reviews Endocrinology. 13 (7): 385–399. doi:10.1038/nrendo.2017.39. PMID 28429780. https://pubmed.ncbi.nlm.nih.gov/28429780/
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
Jarosinski, Mark A; Chen, Yen-Shan; Varas, Nicolás; Dhayalan, Balamurugan; Chatterjee, Deepak; Weiss, Michael A (24 November 2021). "New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals". The Journal of Clinical Endocrinology & Metabolism. 107 (4): 909–928. doi:10.1210/clinem/dgab849. ISSN 0021-972X. PMC 8947325. PMID 34850005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947325
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
"Summary Basis of Decision for Awiqli". Health Canada. https://dhpp.hpfb-dgpsa.ca/review-documents/resource/SBD1734642660051
"Awiqli EPAR". European Medicines Agency. 21 March 2024. Archived from the original on 23 March 2024. Retrieved 23 March 2024. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged. https://ema.europa.eu/en/medicines/human/EPAR/awiqli
Agency, European Medicines (3 June 2024). "Awiqli | European Medicines Agency (EMA)". ema.europa.eu. Retrieved 11 March 2025. https://ema.europa.eu/en/medicines/human/EPAR/awiqli
Kjeldsen TB, Hubálek F, Hjørringgaard CU, Tagmose TM, Nishimura E, Stidsen CE, Porsgaard T, Fledelius C, Refsgaard HH, Gram-Nielsen S, Naver H, Pridal L, Hoeg-Jensen T, Jeppesen CB, Manfè V, Ludvigsen S, Lautrup-Larsen I, Madsen P (July 2021). "Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans". Journal of Medicinal Chemistry. 64 (13): 8942–8950. doi:10.1021/acs.jmedchem.1c00257. PMID 33944562. S2CID 233718893. https://doi.org/10.1021%2Facs.jmedchem.1c00257
Kjeldsen TB, Hubálek F, Hjørringgaard CU, Tagmose TM, Nishimura E, Stidsen CE, Porsgaard T, Fledelius C, Refsgaard HH, Gram-Nielsen S, Naver H, Pridal L, Hoeg-Jensen T, Jeppesen CB, Manfè V, Ludvigsen S, Lautrup-Larsen I, Madsen P (July 2021). "Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans". Journal of Medicinal Chemistry. 64 (13): 8942–8950. doi:10.1021/acs.jmedchem.1c00257. PMID 33944562. S2CID 233718893. https://doi.org/10.1021%2Facs.jmedchem.1c00257
Khedkar, Anand; Lebovitz, Harold; Fleming, Alexander; Cherrington, Alan; Jose, Vinu; Athalye, Sandeep N.; Vishweswaramurthy, Ashwini (January 2020). "Pharmacokinetics and Pharmacodynamics of Insulin Tregopil in Relation to Premeal Dosing Time, Between Meal Interval, and Meal Composition in Patients With Type 2 Diabetes Mellitus". Clinical Pharmacology in Drug Development. 9 (1): 74–86. doi:10.1002/cpdd.730. PMC 7004075. PMID 31392840. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004075
Khedkar, Anand; Lebovitz, Harold; Fleming, Alexander; Cherrington, Alan; Jose, Vinu; Athalye, Sandeep N.; Vishweswaramurthy, Ashwini (May 2019). "Impact of Insulin Tregopil and Its Permeation Enhancer on Pharmacokinetics of Metformin in Healthy Volunteers: Randomized, Open-Label, Placebo-Controlled, Crossover Study". Clinical and Translational Science. 12 (3): 276–282. doi:10.1111/cts.12609. PMC 6510383. PMID 30592549. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510383
Joshi, Shashank; Jayanth, Vathsala; Loganathan, Subramanian; Sambandamurthy, Vasan K.; Athalye, Sandeep N. (September 2023). "Insulin Tregopil: An Ultra-Fast Oral Recombinant Human Insulin Analog: Preclinical and Clinical Development in Diabetes Mellitus". Drugs. 83 (13): 1161–1178. doi:10.1007/s40265-023-01925-1. PMID 37578592. S2CID 260885799. /wiki/Doi_(identifier)
Joshi, Shashank; Jayanth, Vathsala; Loganathan, Subramanian; Sambandamurthy, Vasan K.; Athalye, Sandeep N. (September 2023). "Insulin Tregopil: An Ultra-Fast Oral Recombinant Human Insulin Analog: Preclinical and Clinical Development in Diabetes Mellitus". Drugs. 83 (13): 1161–1178. doi:10.1007/s40265-023-01925-1. PMID 37578592. S2CID 260885799. /wiki/Doi_(identifier)
Eldor, Roy; Arbit, Ehud; Corcos, Asher; Kidron, Miriam (9 April 2013). "Glucose-Reducing Effect of the ORMD-0801 Oral Insulin Preparation in Patients with Uncontrolled Type 1 Diabetes: A Pilot Study". PLOS ONE. 8 (4): e59524. Bibcode:2013PLoSO...859524E. doi:10.1371/journal.pone.0059524. ISSN 1932-6203. PMC 3622027. PMID 23593142. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622027
Eldor, Roy; Neutel, Joel; Homer, Kenneth; Kidron, Miriam (November 2021). "Efficacy and safety of 28-day treatment with oral insulin ( ORMD -0801) in patients with type 2 diabetes: A randomized, placebo-controlled trial". Diabetes, Obesity and Metabolism. 23 (11): 2529–2538. doi:10.1111/dom.14499. PMID 34310011. S2CID 236432013. /wiki/Doi_(identifier)
Eldor, Roy; Fleming, G. Alexander; Neutel, Joel; Homer, Kenneth E.; Kidron, Miriam; Rosenstock, Julio (1 June 2020). "1004-P: Oral Insulin (ORMD-0801) Effects on Glucose Parameters in Uncontrolled T2DM on OADs". Diabetes. 69 (Supplement_1). doi:10.2337/db20-1004-P. S2CID 225845842. /wiki/Doi_(identifier)
Eldor, Roy; Francis, Bruce H.; Fleming, Alexander; Neutel, Joel; Homer, Kenneth; Kidron, Miriam; Rosenstock, Julio (April 2023). "Oral insulin ( ORMD -0801) in type 2 diabetes mellitus: A dose-finding 12-week randomized placebo-controlled study". Diabetes, Obesity and Metabolism. 25 (4): 943–952. doi:10.1111/dom.14901. PMID 36281496. S2CID 253108516. /wiki/Doi_(identifier)
Heise, Tim; Chien, Jenny; Beals, John M.; Benson, Charles; Klein, Oliver; Moyers, Julie S.; Haupt, Axel; Pratt, Edward John (2023). "Pharmacokinetic and pharmacodynamic properties of the novel basal insulin Fc (insulin efsitora alfa), an insulin fusion protein in development for once-weekly dosing for the treatment of patients with diabetes". Diabetes, Obesity and Metabolism. 25 (4): 1080–1090. doi:10.1111/dom.14956. PMID 36541037. S2CID 255034380. /wiki/Doi_(identifier)
Moyers, Julie S.; Hansen, Ryan J.; Day, Jonathan W.; Dickinson, Craig D.; Zhang, Chen; Ruan, Xiaoping; Ding, Liyun; Brown, Robin M.; Baker, Hana E.; Beals, John M. (2022). "Preclinical Characterization of LY3209590, a Novel Weekly Basal Insulin Fc-Fusion Protein". Journal of Pharmacology and Experimental Therapeutics. 382 (3): 346–355. doi:10.1124/jpet.122.001105. PMID 35840338. https://doi.org/10.1124%2Fjpet.122.001105
Kazda, Christof M.; Bue-Valleskey, Juliana M.; Chien, Jenny; Zhang, Qianyi; Chigutsa, Emmanuel; Landschulz, William; Wullenweber, Paula; Haupt, Axel; Dahl, Dominik (2023). "Novel Once-Weekly Basal Insulin Fc Achieved Similar Glycemic Control With a Safety Profile Comparable to Insulin Degludec in Patients With Type 1 Diabetes". Diabetes Care. 46 (5): 1052–1059. doi:10.2337/dc22-2395. PMC 10154655. PMID 36920867. https://diabetesjournals.org/care/article/46/5/1052/148588/Novel-Once-Weekly-Basal-Insulin-Fc-Achieved
PhD, Jonathan D. Grinstein (21 October 2024). "Novo Nordisk Researchers Engineer Glucose-Sensitive Insulin Switch". Inside Precision Medicine. Retrieved 1 January 2025. https://insideprecisionmedicine.com/topics/translational-research/novo-nordisk-researchers-engineer-glucose-sensitive-insulin-switch/
Kwon, Diana (16 October 2024). "'Smart' insulin prevents diabetic highs — and deadly lows". Nature. doi:10.1038/d41586-024-03357-7. PMID 39414970. https://nature.com/articles/d41586-024-03357-7
Hoeg-Jensen, Thomas; Kruse, Thomas; Brand, Christian L.; Sturis, Jeppe; Fledelius, Christian; Nielsen, Peter K.; Nishimura, Erica; Madsen, Alice R.; Lykke, Lennart; Halskov, Kim S.; Koščová, Simona; Kotek, Vladislav; Davis, Anthony P.; Tromans, Robert A.; Tomsett, Michael (16 October 2024). "Glucose-sensitive insulin with attenuation of hypoglycaemia". Nature. 634 (8035): 944–951. Bibcode:2024Natur.634..944H. doi:10.1038/s41586-024-08042-3. ISSN 1476-4687. PMC 11499270. PMID 39415004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499270
Brownlee, Michael; Cerami, Anthony (7 December 1979). "A Glucose-Controlled Insulin-Delivery System: Semisynthetic Insulin Bound to Lectin". Science. 206 (4423): 1190–1191. Bibcode:1979Sci...206.1190B. doi:10.1126/science.505005. PMID 505005. https://science.org/doi/10.1126/science.505005
Jarosinski, Mark A; Chen, Yen-Shan; Varas, Nicolás; Dhayalan, Balamurugan; Chatterjee, Deepak; Weiss, Michael A (1 April 2022). "New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals". The Journal of Clinical Endocrinology & Metabolism. 107 (4): 909–928. doi:10.1210/clinem/dgab849. ISSN 0021-972X. PMC 8947325. PMID 34850005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947325
Liu, Yun; Wang, Shiqi; Wang, Zejun; Yu, Jicheng; Wang, Jinqiang; Buse, John B.; Gu, Zhen (10 June 2024). "Recent Progress in Glucose-Responsive Insulin". Diabetes. 73 (9): 1377–1388. doi:10.2337/dbi23-0028. ISSN 0012-1797. PMID 38857114. https://diabetesjournals.org/diabetes/article-abstract/73/9/1377/156832/Recent-Progress-in-Glucose-Responsive-Insulin?redirectedFrom=fulltext
"FDA approves Lyumjev™ (insulin lispro-aabc injection), Lilly's new rapid-acting insulin | Eli Lilly and Company". Eli Lilly and Company. Archived from the original on 29 January 2025. Retrieved 18 March 2025. http://web.archive.org/web/20250129002107/https://investor.lilly.com/news-releases/news-release-details/fda-approves-lyumjevtm-insulin-lispro-aabc-injection-lillys-new
"Rezvoglar Becomes Second Interchangeable Insulin Biosimilar". Center for Biosimilars. 23 November 2022. Retrieved 17 March 2025. https://www.centerforbiosimilars.com/view/rezvoglar-becomes-second-interchangeable-insulin-biosimilar
Commissioner, Office of the (18 February 2025). "FDA Approves First Rapid-Acting Insulin Biosimilar Product for Treatment of Diabetes". FDA. Retrieved 17 March 2025. https://www.fda.gov/news-events/press-announcements/fda-approves-first-rapid-acting-insulin-biosimilar-product-treatment-diabetes
Quianzon, Celeste C.; Cheikh, Issam (January 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714061
"Insulin Aspart Monograph for Professionals". Drugs.com. American Society of Health-System Pharmacists. Archived from the original on 6 March 2019. Retrieved 3 March 2019. https://drugs.com/monograph/insulin-aspart.html
"Drug Approval Package". accessdata.fda.gov. Archived from the original on 8 February 2025. Retrieved 11 March 2025. http://web.archive.org/web/20250208160300/https://accessdata.fda.gov/drugsatfda_docs/nda/2000/21081_lantus.cfm
"Drug Approval Package: Apidra (Insulin Glulisine [rDNA Origin]) NDA #021629". U.S. Food and Drug Administration (FDA). Retrieved 10 August 2024. https://accessdata.fda.gov/drugsatfda_docs/nda/2004/21-629_Apidra.cfm
"Levemir (insulin detemir) FDA Approval History". Drugs.com. Retrieved 11 March 2025. https://drugs.com/history/levemir.html
"Drug Approval Package". www.accessdata.fda.gov. Archived from the original on 28 February 2025. Retrieved 18 March 2025. http://web.archive.org/web/20250228201310/https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021-536_LevemirTOC.cfm
Niloy, Kumar Kulldeep; Lowe, Tao L. (December 2023). "Injectable systems for long-lasting insulin therapy". Advanced Drug Delivery Reviews. 203: 115121. doi:10.1016/j.addr.2023.115121. PMID 37898336. https://linkinghub.elsevier.com/retrieve/pii/S0169409X23004362
"FDA approves Lyumjev™ (insulin lispro-aabc injection), Lilly's new rapid-acting insulin | Eli Lilly and Company". Eli Lilly and Company. Archived from the original on 29 January 2025. Retrieved 18 March 2025. http://web.archive.org/web/20250129002107/https://investor.lilly.com/news-releases/news-release-details/fda-approves-lyumjevtm-insulin-lispro-aabc-injection-lillys-new
Commissioner, Office of the (30 July 2021). "FDA Approves First Interchangeable Biosimilar Insulin Product for Treatment of Diabetes". FDA. Retrieved 17 March 2025. https://www.fda.gov/news-events/press-announcements/fda-approves-first-interchangeable-biosimilar-insulin-product-treatment-diabetes
"Rezvoglar Becomes Second Interchangeable Insulin Biosimilar". Center for Biosimilars. 23 November 2022. Retrieved 17 March 2025. https://www.centerforbiosimilars.com/view/rezvoglar-becomes-second-interchangeable-insulin-biosimilar
"Awiqli EPAR". European Medicines Agency. 21 March 2024. Archived from the original on 23 March 2024. Retrieved 23 March 2024. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged. https://ema.europa.eu/en/medicines/human/EPAR/awiqli
Commissioner, Office of the (18 February 2025). "FDA Approves First Rapid-Acting Insulin Biosimilar Product for Treatment of Diabetes". FDA. Retrieved 17 March 2025. https://www.fda.gov/news-events/press-announcements/fda-approves-first-rapid-acting-insulin-biosimilar-product-treatment-diabetes
Banerjee S, Tran K, Li H, Cimon K, Daneman D, Simpson S, Campbell K (March 2007). Short-acting insulin analogues for diabetes mellitus: meta-analysis of clinical outcomes and assessment of cost-effectiveness (Report). Canadian Agency for Drugs and Technologies in Health (CADTH). Technology Report no 87. Archived from the original on 4 November 2019. Retrieved 10 September 2020. https://web.archive.org/web/20191104140933/https://cadth.ca/short-acting-insulin-analogues-diabetes-mellitus-meta-analysis-clinical-outcomes-and-assessment-0
"IQWiG - Rapid-acting insulin analogues in diabetes mellitus type 1: Superiority not proven". 8 February 2008. Archived from the original on 8 February 2008. Retrieved 10 March 2025. https://web.archive.org/web/20080208123345/http://iqwig.de/index.658.en.html
"IQWiG - Rapid-acting insulin analogues in diabetes mellitus type 1: Superiority not proven". 8 February 2008. Archived from the original on 8 February 2008. Retrieved 10 March 2025. https://web.archive.org/web/20080208123345/http://iqwig.de/index.658.en.html