For example, the proper divisors of 12 (that is, the positive divisors of 12 that are not equal to 12) are 1, 2, 3, 4, and 6, so the aliquot sum of 12 is 16 i.e. (1 + 2 + 3 + 4 + 6).
The values of s(n) for n = 1, 2, 3, ... are:
The aliquot sum function can be used to characterize several notable classes of numbers:
The mathematicians Pollack & Pomerance (2016) noted that one of Erdős' "favorite subjects of investigation" was the aliquot sum function.
Main article: Aliquot sequence
Iterating the aliquot sum function produces the aliquot sequence n, s(n), s(s(n)), … of a nonnegative integer n (in this sequence, we define s(0) = 0).
Sociable numbers are numbers whose aliquot sequence is a periodic sequence. Amicable numbers are sociable numbers whose aliquot sequence has period 2.
It remains unknown whether these sequences always end with a prime number, a perfect number, or a periodic sequence of sociable numbers.7
Pollack, Paul; Pomerance, Carl (2016), "Some problems of Erdős on the sum-of-divisors function", Transactions of the American Mathematical Society, Series B, 3: 1–26, doi:10.1090/btran/10, MR 3481968 /wiki/Carl_Pomerance ↩
Sesiano, J. (1991), "Two problems of number theory in Islamic times", Archive for History of Exact Sciences, 41 (3): 235–238, doi:10.1007/BF00348408, JSTOR 41133889, MR 1107382, S2CID 115235810 /wiki/Doi_(identifier) ↩
Erdős, P. (1973), "Über die Zahlen der Form σ ( n ) − n {\displaystyle \sigma (n)-n} und n − ϕ ( n ) {\displaystyle n-\phi (n)} " (PDF), Elemente der Mathematik, 28: 83–86, MR 0337733 /wiki/Paul_Erd%C5%91s ↩
Weisstein, Eric W. "Catalan's Aliquot Sequence Conjecture". MathWorld. /wiki/Eric_W._Weisstein ↩