Equivalently, an operator space is a subspace of a C*-algebra.
The category of operator spaces includes operator systems and operator algebras. For operator systems, in addition to an induced matrix norm of an operator space, one also has an induced matrix order. For operator algebras, there is still the additional ring structure.
Paulsen, Vern (2002). Completely Bounded Maps and Operator Algebras. Cambridge University Press. p. 26. ISBN 978-0-521-81669-4. Retrieved 2022-03-08. 978-0-521-81669-4 ↩
Pisier, Gilles (2003). Introduction to Operator Space Theory. Cambridge University Press. p. 1. ISBN 978-0-521-81165-1. Retrieved 2008-12-18. 978-0-521-81165-1 ↩
Blecher, David P.; Christian Le Merdy (2004). Operator Algebras and Their Modules: An Operator Space Approach. Oxford University Press. First page of Preface. ISBN 978-0-19-852659-9. Retrieved 2008-12-18. 978-0-19-852659-9 ↩