In computing, an integer version of this sequence is often used to generate a discrete uniform distribution rather than a continuous one. Instead of using an irrational number, which cannot be calculated on a digital computer, the ratio of two integers is used in its place. An integer k is chosen, relatively prime to an integer modulus m. In the common case that m is a power of 2, this amounts to requiring that k is odd.
The sequence of all multiples of such an integer k,
That is, the sequence of the remainders of each term when divided by m will be uniformly distributed in the interval [0, m).
The term appears to originate with George Marsaglia’s paper "Xorshift RNGs".3 The following C code generates what Marsaglia calls a "Weyl sequence":
In this case, the odd integer is 362437, and the results are computed modulo m = 232 because d is a 32-bit quantity. The results are equidistributed modulo 232.
Weyl, H. (September 1916). "Über die Gleichverteilung von Zahlen mod. Eins" [On the uniform distribution of numbers modulo one]. Mathematische Annalen (in German). 77 (3): 313–352. doi:10.1007/BF01475864. S2CID 123470919. /wiki/Hermann_Weyl ↩
Kuipers, L.; Niederreiter, H. (2006) [1974]. Uniform Distribution of Sequences. Dover Publications. ISBN 0-486-45019-8. 0-486-45019-8 ↩
Marsaglia, George (July 2003). "Xorshift RNGs". Journal of Statistical Software. 8 (14). doi:10.18637/jss.v008.i14. /wiki/George_Marsaglia ↩