Anton K. Formann studied psychology with statistics and anthropology (individual curriculum approved by the university) at the University of Vienna, Austria, where he received his PhD in psychology in 1973 under the supervision of Gerhard H. Fischer at the university's Department of Psychology. He worked as a post doc researcher and Assistant Professor at Fischer's division until 1985, when he earned his postdoctoral professorial qualification (habilitation in psychology) and became Associate Professor at the University of Vienna.
He also studied statistics at Sheffield Hallam University (UK) where he graduated (MSc with distinction) in 1998. In 1999, he gained his second postdoctoral professional qualification (habilitation in applied statistics).
In 2004, after being substitute chair holder for 5 years, he became full professor for psychological methods at the University of Vienna, succeeding the chair of mathematical psychology of Gerhard H. Fischer.
From 2005 onwards, Formann was Vice Head of the Department of Basic Psychological Research within the Faculty of Psychology at the University of Vienna, and during 2006-08 additionally Vice Dean of the Faculty.
Formann was probably the first researcher to practically apply Fischer's linear logistic test model (LLTM) for test development. The LLTM is a special case of the Rasch model, which allows the construction of items with item difficulties based on the user's demand. This resulted in the development of a Rasch-scaled abstract reasoning test (based on Raven's matrices test) which has since been widely used in research and practice. A revised version of this language-free intelligence test that has been calibrated against large contemporary samples of men and women is forthcoming.
Formann, A. K. (1993). Fixed-distance latent class models for the analysis of sets of two-way contingency tables. Biometrics, 49, 511-521.
Formann, A. K. (1994). Measurement errors in caries diagnosis: Some further latent class models. Biometrics, 50, 865-871.
Formann, A. K. (2003). Latent class model diagnosis from a frequentist point of view. Biometrics, 59, 189-196.
Formann, A. K. (1994). Measuring change in latent subgroups using dichotomous data: Unconditional, conditional, and semiparametric maximum-likelihood-estimation. Journal of the American Statistical Association, 89, 1027-1034.
Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87, 476-486.
Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87-111.
Formann, A. K. (1989). Constrained latent class models: Some further applications. British Journal of Mathematical and Statistical Psychology, 42, 37-54.
Formann, A. K. (2001). Misspecifying latent class models by mixture binomials. British Journal of Mathematical and Statistical Psychology, 54, 279-291.
Formann, A. K. (2006). Testing the Rasch model by means of the mixture fit index. British Journal of Mathematical and Statistical Psychology, 59, 89-95.
Nader, I. W., Tran, U. S., & Formann, A. K. (2011). Sensitivity to initial values in full non-parametric maximum-likelihood estimation of the two-parameter logistic model. British Journal of Mathematical and Statistical Psychology, 64, 320-336.
Formann, A. K. (1978). Note on parameter-estimation for Lazarsfeld latent class analysis. Psychometrika, 43, 123-126.
Formann, A. K. (1986). A note on the computation of the 2nd-order derivatives of the elementary symmetrical functions in the Rasch model. Psychometrika, 51, 335-339.
Formann, A. K., & Rop, I. (1987). On the inhomogeneity of a test compounded of 2 Rasch homogeneous subscales. Psychometrika, 52, 263-267.
Formann, A. K. (1988). Latent class models for nonmonotone dichotomous items. Psychometrika, 53, 45-62.
Formann, A. K., &Ponocny, I. (2002). Latent change classes in dichotomous data. Psychometrika, 67, 437-457.
Böhning, D., Holling, H., & Kubinger, K. D. (2010). In memoriam Anton K. Formann. Psychological Test and Assessment Modeling, 52, 491-492.
Nader, I. W., Tran, U. S., & Formann, A. K. (2011). Sensitivity to initial values in full non-parametric maximum-likelihood estimation of the two-parameter logistic model. British Journal of Mathematical and Statistical Psychology, 64, 320-336.
Formann, A. K., & Piswanger, K. (1979). Wiener MatrizenTest. Ein Rasch-skalierter sprachfreier Intelligenztest [Viennese Matrices Test: A Rasch-scaled culture-fair intelligence test]. Weinheim: Beltz.
Formann, A. K., Waldherr, K., & Piswanger, K. (2011). Wiener Matrizen-Test 2 (WMT-2): Ein Rasch-skalierter sprachfreier Kurztest zur Erfassung der Intelligenz [Viennese Matrices Test 2: A Rasch-scaled language-free short test for the assessment of intelligence]. Göttingen: Hogrefe.
Formann, A. K. (1984). Latent Class Analyse: Einführung in die Theorie und Anwendung [Latent class analysis: Introduction to theory and application]. Weinheim: Beltz.
Formann, A. K. (2008). Estimating the proportion of studies missing for meta-analysis due to publication bias. Contemporary Clinical Trials, 29, 732-739.
Pietschnig, J., Voracek, M., & Formann, A. K. (2010). Mozart effect––Shmozart effect: A meta-analysis. Intelligence, 38, 314-323.
Formann, A. K. (2010). The Newcomb-Benford law in its relation to some common distributions. PLoS ONE, 5, e10541.
Formann, A. K. (2003). Modeling data from water-level tasks: A test theoretical analysis. Perceptual and Motor Skills, 96, 1153-1172.
Formann, A. K. (2003). Modeling data from water-level tasks: A test theoretical analysis. Perceptual and Motor Skills, 96, 1153-1172.
Tran, U. S., & Formann, A. K. (2008). Piaget’s water-level tasks: Performance across the lifespan with emphasis on the elderly. Personality and Individual Differences, 45, 232-237.
Voracek, M., Tran, U. S., & Formann, A. K. (2008). Birthday and birthmate problems: Misconceptions of probability among psychology undergraduates and casino visitors and personnel. Perceptual and Motor Skills, 106, 91-103.
Tran, U. S., & Formann, A. K. (2009). Performance of parallel analysis in retrieving unidimensionality in the presence of binary data. Educational and Psychological Measurement, 69, 50-61.
Voracek, M. (2010). In memoriam: Anton K. Formann (1949-2010). Biometric Bulletin, 27(3), 7-8.
Böhning, D., Holling, H., & Kubinger, K. D. (2010). In memoriam Anton K. Formann. Psychological Test and Assessment Modeling, 52, 491-492.