A number of mechanisms of periodic travelling wave generation are now well established. These include:
In all of these cases, a key question is which member of the periodic travelling wave family is selected. For most mathematical systems this remains an open problem.
There are two particular mathematical systems that serve as prototypes for periodic travelling waves, and which have been fundamental to the development of mathematical understanding and theory. These are the "lambda-omega" class of reaction–diffusion equations
∂
u
∂
t
=
∂
2
u
∂
x
2
+
λ
(
r
)
u
−
ω
(
r
)
v
{\displaystyle {\frac {\partial u}{\partial t}}={\frac {\partial ^{2}u}{\partial x^{2}}}+\lambda (r)u-\omega (r)v}
∂
v
∂
t
=
∂
2
v
∂
x
2
+
ω
(
r
)
u
+
λ
(
r
)
v
{\displaystyle {\frac {\partial v}{\partial t}}={\frac {\partial ^{2}v}{\partial x^{2}}}+\omega (r)u+\lambda (r)v}
(
r
=
u
2
+
v
2
{\textstyle r={\sqrt {u^{2}+v^{2}}}}
) and the complex Ginzburg–Landau equation.
∂
A
∂
t
=
A
+
(
1
+
i
b
)
∂
2
A
∂
x
2
−
(
1
+
i
c
)
|
A
|
2
A
{\displaystyle {\frac {\partial A}{\partial t}}=A+(1+ib){\frac {\partial ^{2}A}{\partial x^{2}}}-(1+ic)|A|^{2}A}
These exact solutions for the periodic travelling wave families enable a great deal of further analytical study. Exact conditions for the stability of the periodic travelling waves can be found, and the condition for absolute stability can be reduced to the solution of a simple polynomial. Also exact solutions have been obtained for the selection problem for waves generated by invasions
and by zero Dirichlet boundary conditions.
In the latter case, for the complex Ginzburg–Landau equation, the overall solution is a stationary Nozaki-Bekki hole.
Much of the work on periodic travelling waves in the complex Ginzburg–Landau equation is in the physics literature, where they are usually known as plane waves.
N. Kopell, L.N. Howard (1973) "Plane wave solutions to reaction–diffusion equations", Stud. Appl. Math. 52: 291–328.
I. S. Aranson, L. Kramer (2002) "The world of the complex Ginzburg–Landau equation", Rev. Mod. Phys. 74: 99–143. DOI:10.1103/RevModPhys.74.99 http://link.aps.org/doi/10.1103/RevModPhys.74.99
S. Coombes (2001) "From periodic travelling waves to travelling fronts in the spike-diffuse-spike model of dendritic waves", Math. Biosci. 170: 155–172.
DOI:10.1016/S0025-5564(00)00070-5 https://dx.doi.org/10.1016/S0025-5564(00)00070-5
J.A. Sherratt, G. J. Lord (2007) "Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments", Theor. Popul. Biol. 71 (2007): 1–11.
DOI:10.1016/j.tpb.2006.07.009 https://dx.doi.org/10.1016/j.tpb.2006.07.009
S. A. Gourley, N. F. Britton (1993) "Instability of traveling wave solutions of a population model with nonlocal effects", IMA J. Appl. Math. 51: 299–310.
DOI:10.1093/imamat/51.3.299 https://archive.today/20130415152916/http://imamat.oxfordjournals.org/content/51/3/299.short
P. Ashwin, M. V. Bartuccelli, T. J. Bridges, S. A. Gourley (2002) "Travelling fronts for the KPP equation with spatio-temporal delay", Z. Angew. Math. Phys. 53: 103–122.
DOI:0010-2571/02/010103-20 https://link.springer.com/article/10.1007%2Fs00033-002-8145-8?LI=true
M. Kot (1992) "Discrete-time travelling waves: ecological examples", J. Math. Biol. 30: 413-436. DOI:10.1007/BF00173295 https://dx.doi.org/10.1007/BF00173295
M. D. S. Herrera, J. S. Martin (2009) "An analytical study in coupled map lattices of synchronized states and traveling waves, and of their period-doubling cascades", Chaos, Solitons & Fractals 42: 901–910.DOI:10.1016/j.chaos.2009.02.040 https://dx.doi.org/10.1016/j.chaos.2009.02.040
J. A. Sherratt (1996) "Periodic travelling waves in a family of deterministic cellular automata", Physica D 95: 319–335.
DOI:10.1016/0167-2789(96)00070-X https://dx.doi.org/10.1016/0167-2789(96)00070-X
M. Courbage (1997) "On the abundance of traveling waves in 1D infinite cellular automata", Physica D 103: 133–144.
DOI:10.1016/S0167-2789(96)00256-4 https://dx.doi.org/10.1016/S0167-2789(96)00256-4
N. Kopell, L.N. Howard (1973) "Plane wave solutions to reaction–diffusion equations", Stud. Appl. Math. 52: 291–328.
J. A. Sherratt (1994) "Irregular
wakes in reaction-diffusion waves", Physica D 70: 370–382. DOI:10.1016/0167-2789(94)90072-8 https://dx.doi.org/10.1016/0167-2789(94)90072-8
S.V. Petrovskii, H. Malchow (1999) "A minimal model of pattern formation in a prey–predator system", Math. Comp. Modelling 29: 49–63. DOI:10.1016/S0895-7177(99)00070-9 https://dx.doi.org/10.1016/S0895-7177(99)00070-9
E. Ranta, V. Kaitala (1997) "Travelling waves in vole population dynamics", Nature 390: 456. DOI:10.1038/37261 http://www.nature.com/nature/journal/v390/n6659/pdf/390456a0.pdf
X. Lambin, D. A. Elston, S. J. Petty, J. L. MacKinnon (1998) "Spatial asynchrony and periodic travelling waves in cyclic populations of field voles", Proc. R. Soc. Lond. B 265: 1491–1496. DOI:10.1098/rspb.1998.0462 http://rspb.royalsocietypublishing.org/content/265/1405/1491.short
J.D.M. Rademacher, B. Sandstede, A. Scheel (2007) "Computing absolute and essential spectra using continuation", Physica D 229: 166–183. DOI:10.1016/j.physd.2007.03.016 /wiki/Bj%C3%B6rn_Sandstede
M. J. Smith, J. D. M. Rademacher, J. A. Sherratt (2009) "Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type", SIAM J. Appl. Dyn. Systems 8: 1136–1159. DOI:10.1137/090747865 https://dx.doi.org/10.1137/090747865
N. Kopell, L.N. Howard (1973) "Plane wave solutions to reaction–diffusion equations", Stud. Appl. Math. 52: 291–328.
N. Kopell, L.N. Howard (1973) "Plane wave solutions to reaction–diffusion equations", Stud. Appl. Math. 52: 291–328.
K. Maginu (1981) "Stability of periodic travelling wave solutions with large spatial periods in reaction-diffusion systems", J. Diff. Eqns. 39: 73–99.
10.1016/0022-0396(81)90084-X https://dx.doi.org/10.1016/0022-0396(81)90084-X
M. J. Smith, J.A. Sherratt (2007) "The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction-diffusion systems", Physica D 236: 90–103. DOI:10.1016/j.physd.2007.07.013 https://dx.doi.org/10.1016/j.physd.2007.07.013
B. Sandstede, A. Scheel (2000) "Absolute and convective instabilities of waves on unbounded and large bounded domains", Physica D 145: 233–277.
DOI:10.1016/S0167-2789(00)00114-7 https://dx.doi.org/10.1016/S0167-2789(00)00114-7
I. S. Aranson, L. Kramer (2002) "The world of the complex Ginzburg–Landau equation", Rev. Mod. Phys. 74: 99–143. DOI:10.1103/RevModPhys.74.99 http://link.aps.org/doi/10.1103/RevModPhys.74.99
J.D.M. Rademacher, B. Sandstede, A. Scheel (2007) "Computing absolute and essential spectra using continuation", Physica D 229: 166–183. DOI:10.1016/j.physd.2007.03.016 /wiki/Bj%C3%B6rn_Sandstede
M. J. Smith, J. D. M. Rademacher, J. A. Sherratt (2009) "Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type", SIAM J. Appl. Dyn. Systems 8: 1136–1159. DOI:10.1137/090747865 https://dx.doi.org/10.1137/090747865
A. L. Kay, J. A. Sherratt (2000) "Spatial noise stabilizes periodic wave patterns
in oscillatory systems on finite domains", SIAM J. Appl. Math. 61: 1013–1041.
DOI:10.1137/S0036139999360696 https://dx.doi.org/10.1137/S0036139999360696
D. M. Johnson, O. N. Bjornstad, A.M. Liebhold (2006) "Landscape mosaic induces travelling waves of insect outbreaks", Oecologia 148: 51–60.
DOI:10.1007/s00442-005-0349-0 https://link.springer.com/article/10.1007%2Fs00442-005-0349-0?LI=true
J. A. Sherratt (1994) "Irregular
wakes in reaction-diffusion waves", Physica D 70: 370–382. DOI:10.1016/0167-2789(94)90072-8 https://dx.doi.org/10.1016/0167-2789(94)90072-8
S.V. Petrovskii, H. Malchow (1999) "A minimal model of pattern formation in a prey–predator system", Math. Comp. Modelling 29: 49–63. DOI:10.1016/S0895-7177(99)00070-9 https://dx.doi.org/10.1016/S0895-7177(99)00070-9
K. Nozaki, N. Bekki (1983) "Pattern selection and spatiotemporal transition to chaos in the Ginzburg–Landau equation", Phys. Rev. Lett. 51: 2171-2174. DOI:10.1103/PhysRevLett.51.2171 http://link.aps.org/doi/10.1103/PhysRevLett.51.2171
A. Tsameret, V. Steinberg (1994) "Competing states in a Couette–Taylor system with an axial flow", Phys. Rev. E 49: 4077-4086. DOI:10.1103/PhysRevE.49.4077 http://link.aps.org/doi/10.1103/PhysRevE.49.4077
M. Ipsen, L. Kramer, P.G. Sorensen (2000) "Amplitude equations for description of chemical reaction–diffusion systems", Phys. Rep. 337: 193–235.
DOI:10.1016/S0370-1573(00)00062-4 https://dx.doi.org/10.1016/S0370-1573(00)00062-4
A.S. Mikhailov,
K. Showalter (2006) "Control of waves, patterns and turbulence in chemical systems", Phys. Rep. 425: 79–194. DOI:10.1016/j.physrep.2005.11.003 https://dx.doi.org/10.1016/j.physrep.2005.11.003
J.A. Sherratt, M. A. Lewis, A. C. Fowler (1995) "Ecological chaos in the wake of invasion", Proc. Natl. Acad. Sci. USA 92: 2524–2528.
10.1073/pnas.92.7.2524 http://www.pnas.org/content/92/7/2524.short
S.V. Petrovskii, H. Malchow (2001) "Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics", Theor. Pop. Biol. 59: 157–174.
DOI:10.1006/tpbi.2000.1509 https://dx.doi.org/10.1006/tpbi.2000.1509
J. A. Sherratt, X. Lambin, C. J. Thomas, T. N. Sherratt (2002) "Generation of periodic waves by landscape features in cyclic
predator-prey systems" Proc. R. Soc. Lond. B 269: 327–334.
DOI:10.1098/rspb.2001.1890 http://rspb.royalsocietypublishing.org/content/269/1489/327.short
M. Sieber, H. Malchow, S.V. Petrovskii (2010) "Noise-induced suppression of periodic travelling waves in oscillatory reaction–diffusion systems", Proc. R. Soc. Lond. A 466: 1903–1917.
DOI:10.1098/rspa.2009.0611 http://rspa.royalsocietypublishing.org/content/466/2119/1903.abstract
J.A. Sherratt (2008) "A comparison of periodic travelling wave generation by Robin and Dirichlet boundary conditions in oscillatory reaction-diffusion equations". IMA J. Appl. Math. 73: 759-781.
DOI:10.1093/imamat/hxn015 https://archive.today/20130415130010/http://imamat.oxfordjournals.org/content/73/5/759.short
V. N. Biktashev, M. A. Tsyganov (2009) "Spontaneous traveling waves in oscillatory systems with cross diffusion", Phys. Rev. E 80: art. no. 056111.
DOI:10.1103/PhysRevE.80.056111 http://link.aps.org/doi/10.1103/PhysRevE.80.056111
M. R. Garvie, M. Golinski (2010) "Metapopulation dynamics for spatially extended predator–prey interactions", Ecological Complexity 7: 55–59.
DOI:10.1016/j.ecocom.2009.05.001 https://dx.doi.org/10.1016/j.ecocom.2009.05.001
J. A. Sherratt (1994) "Irregular
wakes in reaction-diffusion waves", Physica D 70: 370–382. DOI:10.1016/0167-2789(94)90072-8 https://dx.doi.org/10.1016/0167-2789(94)90072-8
S.V. Petrovskii, H. Malchow (2001) "Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics", Theor. Pop. Biol. 59: 157–174.
DOI:10.1006/tpbi.2000.1509 https://dx.doi.org/10.1006/tpbi.2000.1509
N. Kopell, L.N. Howard (1973) "Plane wave solutions to reaction–diffusion equations", Stud. Appl. Math. 52: 291–328.
I. S. Aranson, L. Kramer (2002) "The world of the complex Ginzburg–Landau equation", Rev. Mod. Phys. 74: 99–143. DOI:10.1103/RevModPhys.74.99 http://link.aps.org/doi/10.1103/RevModPhys.74.99
N. Kopell, L.N. Howard (1973) "Plane wave solutions to reaction–diffusion equations", Stud. Appl. Math. 52: 291–328.
I. S. Aranson, L. Kramer (2002) "The world of the complex Ginzburg–Landau equation", Rev. Mod. Phys. 74: 99–143. DOI:10.1103/RevModPhys.74.99 http://link.aps.org/doi/10.1103/RevModPhys.74.99
J.D.M. Rademacher, B. Sandstede, A. Scheel (2007) "Computing absolute and essential spectra using continuation", Physica D 229: 166–183. DOI:10.1016/j.physd.2007.03.016 /wiki/Bj%C3%B6rn_Sandstede
M. J. Smith, J. D. M. Rademacher, J. A. Sherratt (2009) "Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type", SIAM J. Appl. Dyn. Systems 8: 1136–1159. DOI:10.1137/090747865 https://dx.doi.org/10.1137/090747865
K. Nozaki, N. Bekki (1983) "Pattern selection and spatiotemporal transition to chaos in the Ginzburg–Landau equation", Phys. Rev. Lett. 51: 2171-2174. DOI:10.1103/PhysRevLett.51.2171 http://link.aps.org/doi/10.1103/PhysRevLett.51.2171
J. A. Sherratt (1994) "On the evolution of periodic plane waves in reaction-diffusion equations of λ-ω type", SIAM J. Appl. Math. 54: 1374–1385. DOI: 10.1137/S0036139993243746 https://dx.doi.org/10.1137/S0036139993243746
N. Bekki, K. Nozaki (1985) "Formations of spatial patterns and holes in the generalized Ginzburg–Landau equation", Phys. Lett. A 110: 133–135.
DOI: 10.1016/0375-9601(85)90759-5 https://dx.doi.org/10.1016/0375-9601(85)90759-5
J. A. Sherratt (2003)"Periodic travelling wave selection by Dirichlet boundary conditions in oscillatory reaction-diffusion systems", SIAM J. Appl. Math. 63: 1520–1538. DOI:10.1137/S0036139902392483 https://dx.doi.org/10.1137/S0036139902392483
N. Bekki, K. Nozaki (1985) "Formations of spatial patterns and holes in the generalized Ginzburg–Landau equation", Phys. Lett. A 110: 133–135.
DOI: 10.1016/0375-9601(85)90759-5 https://dx.doi.org/10.1016/0375-9601(85)90759-5
J. Lega (2001) "Traveling hole solutions of the complex Ginzburg–Landau equation: a review", Physica D 152: 269–287. DOI:10.1016/S0167-2789(01)00174-9 https://dx.doi.org/10.1016/S0167-2789(01)00174-9
E. J. Doedel, J. P. Kernevez (1986) "AUTO: software for continuation and bifurcation problems in ordinary differential equations", Applied Mathematics Report, California Institute of Technology, Pasadena, USA
Section 3.4.2 of B. Sandstede (2002) "Stability of travelling waves". In: B. Fiedler (ed.) Handbook of Dynamical Systems II, North-Holland, Amsterdam, pp. 983–1055. http://www.dam.brown.edu/people/sandsted/publications/survey-stability-of-waves.pdf Archived 2013-09-27 at the Wayback Machine http://www.dam.brown.edu/people/sandsted/publications/survey-stability-of-waves.pdf
B. Deconinck, J. N. Kutz (2006)
"Computing spectra of linear operators using the Floquet–Fourier–Hill method", J. Comput. Phys. 219: 296–321. DOI:10.1016/j.jcp.2006.03.020 /wiki/J._Nathan_Kutz
J.D.M. Rademacher, B. Sandstede, A. Scheel (2007) "Computing absolute and essential spectra using continuation", Physica D 229: 166–183. DOI:10.1016/j.physd.2007.03.016 /wiki/Bj%C3%B6rn_Sandstede
J. A. Sherratt (2013) "Numerical continuation of boundaries in parameter space between stable and unstable periodic travelling wave (wavetrain) solutions of partial differential equations", Adv. Comput. Math, in press. DOI:10.1007/s10444-012-9273-0 https://link.springer.com/article/10.1007/s10444-012-9273-0
J.A. Sherratt (2012) "Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations",
Appl. Math. Computation 218: 4684–4694. DOI:10.1016/j.amc.2011.11.005 https://dx.doi.org/10.1016/j.amc.2011.11.005
E. Ranta, V. Kaitala (1997) "Travelling waves in vole population dynamics", Nature 390: 456. DOI:10.1038/37261 http://www.nature.com/nature/journal/v390/n6659/pdf/390456a0.pdf
X. Lambin, D. A. Elston, S. J. Petty, J. L. MacKinnon (1998) "Spatial asynchrony and periodic travelling waves in cyclic populations of field voles", Proc. R. Soc. Lond. B 265: 1491–1496. DOI:10.1098/rspb.1998.0462 http://rspb.royalsocietypublishing.org/content/265/1405/1491.short
A. C. Nilssen, O. Tenow, H. Bylund (2007) "Waves and synchrony in Epirrita autumnata/Operophtera brumata outbreaks II. Sunspot activity cannot explain cyclic outbreaks", J. Animal Ecol. 76: 269–275.
DOI:10.1111/j.1365-2656.2006.01205.x/full http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2006.01205.x/full
D. M. Johnson, O. N. Bjornstad, A.M. Liebhold (2006) "Landscape mosaic induces travelling waves of insect outbreaks", Oecologia 148: 51–60.
DOI:10.1007/s00442-005-0349-0 https://link.springer.com/article/10.1007%2Fs00442-005-0349-0?LI=true
R. Moss, D.A. Elston, A. Watson (2000) "Spatial asynchrony and demographic travelling waves during red grouse population cycles", Ecology 81: 981-989.
DOI:10.1890/0012-9658 https://dx.doi.org/10.1890/0012-9658(2000)081%5B0981:SAADTW%5D2.0.CO;2
M. Rietkerk, S.C. Dekker, P.C. de Ruiter, J. van de Koppel (2004) "Self-organized patchiness and catastrophic shifts in ecosystems", Science 305: 1926–1929.DOI:10.1126/science.1101867 https://www.science.org/doi/10.1126/science.1101867
C. Valentin, J. M. d'Herbes, J. Poesen (1999) "Soil and water components of banded vegetation patterns", Catena 37: 1-24. DOI:10.1016/S0341-8162(99)00053-3 https://dx.doi.org/10.1016/S0341-8162(99)00053-3
D. L. Dunkerley, K. J. Brown (2002) "Oblique vegetation banding in the Australian arid zone: implications for theories of pattern evolution and maintenance", J. Arid Environ. 52: 163–181.
DOI:10.1006/jare.2001.0940 https://dx.doi.org/10.1006/jare.2001.0940
V. Deblauwe (2010) "Modulation des structures de vegetation auto-organisees en milieu aride / Self-organized vegetation pattern modulation in arid climates". PhD thesis, Universite Libre de Bruxelles."Catalogue des thèses électroniques de l'ULB - Thèse ULBetd-04122010-093151". Archived from the original on 2013-09-27. Retrieved 2013-01-09. https://web.archive.org/web/20130927230423/http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-04122010-093151/
N. Kopell, L.N. Howard (1973) "Horizontal bands in Belousov reaction", Science 180: 1171–1173.
DOI:10.1126/science.180.4091.1171 https://www.science.org/doi/abs/10.1126/science.180.4091.1171
G. Bordyugov, N. Fischer, H. Engel, N. Manz, O. Steinbock (2010) "Anomalous dispersion in the Belousov–Zhabotinsky reaction: experiments and modeling", Physica D 239: 766–775. DOI:10.1016/j.physd.2009.10.022 https://dx.doi.org/10.1016/j.physd.2009.10.022
M.R.E.Proctor (2006) "Dynamo action and the sun". In: M. Rieutord, B. Dubrulle (eds.) Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars, EAS Publications Series 21: 241–273. http://www.damtp.cam.ac.uk/user/mrep/solcyc/paper.pdf /wiki/B%C3%A9reng%C3%A8re_Dubrulle
M. R. E. Proctor, E. A. Spiegel (1991) "Waves of solar activity". In: The Sun and Cool Stars: Activity, Magnetism, Dynamos (Lecture Notes in Physics 380) pp. 117–128.DOI:10.1007/3-540-53955-7_116 https://link.springer.com/chapter/10.1007%2F3-540-53955-7_116
E. Kaplan, V. Steinberg (1993) "Phase slippage, nonadiabatic effect, and dynamics of a source of traveling waves", Phys. Rev. Lett. 71: 3291–3294. DOI:10.1103/PhysRevLett.71.3291 http://link.aps.org/doi/10.1103/PhysRevLett.71.3291
L. Pastur, M. T. Westra, D. Snouck, W. van de Water, M. van Hecke, C. Storm, W. van Saarloos (2003) "Sources and holes in a one-dimensional traveling-wave convection experiment", Phys. Rev. E 67: art. no. 036305. DOI:10.1103/PhysRevE.67.036305 http://link.aps.org/doi/10.1103/PhysRevE.67.036305
P. Habdas, M. J. Case, J. R. de Bruyn (2001) "Behavior of sink and source defects in a one-dimensional traveling finger pattern", Phys. Rev. E 63: art.\ no.\ 066305.DOI:10.1103/PhysRevE.63.066305 http://link.aps.org/doi/10.1103/PhysRevE.63.066305