A partition of 2 k {\displaystyle 2k} elements labelled 1 , 1 ¯ , 2 , 2 ¯ , … , k , k ¯ {\displaystyle 1,{\bar {1}},2,{\bar {2}},\dots ,k,{\bar {k}}} is represented as a diagram, with lines connecting elements in the same subset. In the following example, the subset { 1 ¯ , 4 ¯ , 5 ¯ , 6 } {\displaystyle \{{\bar {1}},{\bar {4}},{\bar {5}},6\}} gives rise to the lines 1 ¯ − 4 ¯ , 4 ¯ − 5 ¯ , 5 ¯ − 6 {\displaystyle {\bar {1}}-{\bar {4}},{\bar {4}}-{\bar {5}},{\bar {5}}-6} , and could equivalently be represented by the lines 1 ¯ − 6 , 4 ¯ − 6 , 5 ¯ − 6 , 1 ¯ − 5 ¯ {\displaystyle {\bar {1}}-6,{\bar {4}}-6,{\bar {5}}-6,{\bar {1}}-{\bar {5}}} (for instance).
For n ∈ C {\displaystyle n\in \mathbb {C} } and k ∈ N ∗ {\displaystyle k\in \mathbb {N} ^{*}} , the partition algebra P k ( n ) {\displaystyle P_{k}(n)} is defined by a C {\displaystyle \mathbb {C} } -basis made of partitions, and a multiplication given by diagram concatenation. The concatenated diagram comes with a factor n D {\displaystyle n^{D}} , where D {\displaystyle D} is the number of connected components that are disconnected from the top and bottom elements.
The partition algebra P k ( n ) {\displaystyle P_{k}(n)} is generated by 3 k − 2 {\displaystyle 3k-2} elements of the type
These generators obey relations that include2
Other elements that are useful for generating subalgebras include
In terms of the original generators, these elements are
The partition algebra P k ( n ) {\displaystyle P_{k}(n)} is an associative algebra. It has a multiplicative identity
The partition algebra P k ( n ) {\displaystyle P_{k}(n)} is semisimple for n ∈ C − { 0 , 1 , … , 2 k − 2 } {\displaystyle n\in \mathbb {C} -\{0,1,\dots ,2k-2\}} . For any two n , n ′ {\displaystyle n,n'} in this set, the algebras P k ( n ) {\displaystyle P_{k}(n)} and P k ( n ′ ) {\displaystyle P_{k}(n')} are isomorphic.3
The partition algebra is finite-dimensional, with dim P k ( n ) = B 2 k {\displaystyle \dim P_{k}(n)=B_{2k}} (a Bell number).
Subalgebras of the partition algebra can be defined by the following properties:4
Combining these properties gives rise to 8 nontrivial subalgebras, in addition to the partition algebra itself:56
The symmetric group algebra C S k {\displaystyle \mathbb {C} S_{k}} is the group ring of the symmetric group S k {\displaystyle S_{k}} over C {\displaystyle \mathbb {C} } . The Motzkin algebra is sometimes called the dilute Temperley–Lieb algebra in the physics literature.7
The listed subalgebras are semisimple for n ∈ C − { 0 , 1 , … , 2 k − 2 } {\displaystyle n\in \mathbb {C} -\{0,1,\dots ,2k-2\}} .
Inclusions of planar into non-planar algebras:
Inclusions from constraints on subset size:
Inclusions from allowing top-top and bottom-bottom lines:
We have the isomorphism:
In addition to the eight subalgebras described above, other subalgebras have been defined:
An algebra with a half-integer index k + 1 2 {\displaystyle k+{\frac {1}{2}}} is defined from partitions of 2 k + 2 {\displaystyle 2k+2} elements by requiring that k + 1 {\displaystyle k+1} and k + 1 ¯ {\displaystyle {\overline {k+1}}} are in the same subset. For example, P k + 1 2 {\displaystyle P_{k+{\frac {1}{2}}}} is generated by s i ≤ k − 1 , b i ≤ k , p i ≤ k {\displaystyle s_{i\leq k-1},b_{i\leq k},p_{i\leq k}} so that P k ⊂ P k + 1 2 ⊂ P k + 1 {\displaystyle P_{k}\subset P_{k+{\frac {1}{2}}}\subset P_{k+1}} , and dim P k + 1 2 = B 2 k + 1 {\displaystyle \dim P_{k+{\frac {1}{2}}}=B_{2k+1}} .12
Periodic subalgebras are generated by diagrams that can be drawn on an annulus without line crossings. Such subalgebras include a translation element u = {\displaystyle u=} such that u k = 1 {\displaystyle u^{k}=1} . The translation element and its powers are the only combinations of s i {\displaystyle s_{i}} that belong to periodic subalgebras.
For an integer 0 ≤ ℓ ≤ k {\displaystyle 0\leq \ell \leq k} , let D ℓ {\displaystyle D_{\ell }} be the set of partitions of k + ℓ {\displaystyle k+\ell } elements 1 , 2 , … , k {\displaystyle 1,2,\dots ,k} (bottom) and 1 ¯ , 2 ¯ , … , ℓ ¯ {\displaystyle {\bar {1}},{\bar {2}},\dots ,{\bar {\ell }}} (top), such that no two top elements are in the same subset, and no top element is alone. Such partitions are represented by diagrams with no top-top lines, with at least one line for each top element. For example, in the case k = 12 , ℓ = 5 {\displaystyle k=12,\ell =5} :
Partition diagrams act on D ℓ {\displaystyle D_{\ell }} from the bottom, while the symmetric group S ℓ {\displaystyle S_{\ell }} acts from the top. For any Specht module V λ {\displaystyle V_{\lambda }} of S ℓ {\displaystyle S_{\ell }} (with therefore | λ | = ℓ {\displaystyle |\lambda |=\ell } ), we define the representation of P k ( n ) {\displaystyle P_{k}(n)}
The dimension of this representation is13
where { k ℓ } {\displaystyle \left\{{k \atop \ell }\right\}} is a Stirling number of the second kind, ( ℓ | λ | ) {\displaystyle {\binom {\ell }{|\lambda |}}} is a binomial coefficient, and f λ = dim V λ {\displaystyle f_{\lambda }=\dim V_{\lambda }} is given by the hook length formula.
A basis of P λ {\displaystyle {\mathcal {P}}_{\lambda }} can be described combinatorially in terms of set-partition tableaux: Young tableaux whose boxes are filled with the blocks of a set partition.14
Assuming that P k ( n ) {\displaystyle P_{k}(n)} is semisimple, the representation P λ {\displaystyle {\mathcal {P}}_{\lambda }} is irreducible, and the set of irreducible finite-dimensional representations of the partition algebra is
Representations of non-planar subalgebras have similar structures as representations of the partition algebra. For example, the Brauer-Specht modules of the Brauer algebra are built from Specht modules, and certain sets of partitions.
In the case of the planar subalgebras, planarity prevents nontrivial permutations, and Specht modules do not appear. For example, a standard module of the Temperley–Lieb algebra is parametrized by an integer 0 ≤ ℓ ≤ k {\displaystyle 0\leq \ell \leq k} with ℓ ≡ k mod 2 {\displaystyle \ell \equiv k{\bmod {2}}} , and a basis is simply given by a set of partitions.
The following table lists the irreducible representations of the partition algebra and eight subalgebras.15
The irreducible representations of prop P k {\displaystyle {\text{prop}}P_{k}} are indexed by partitions such that 0 < | λ | ≤ k {\displaystyle 0<|\lambda |\leq k} and their dimensions are f λ { k | λ | } {\displaystyle f_{\lambda }\left\{{k \atop |\lambda |}\right\}} .16 The irreducible representations of Q P k {\displaystyle QP_{k}} are indexed by partitions such that 0 ≤ | λ | ≤ k {\displaystyle 0\leq |\lambda |\leq k} .17 The irreducible representations of U k {\displaystyle U_{k}} are indexed by sequences of partitions.18
Assume n ∈ N ∗ {\displaystyle n\in \mathbb {N} ^{*}} . For V {\displaystyle V} a n {\displaystyle n} -dimensional vector space with basis v 1 , … , v n {\displaystyle v_{1},\dots ,v_{n}} , there is a natural action of the partition algebra P k ( n ) {\displaystyle P_{k}(n)} on the vector space V ⊗ k {\displaystyle V^{\otimes k}} . This action is defined by the matrix elements of a partition { 1 , 1 ¯ , 2 , 2 ¯ , … , k , k ¯ } = ⊔ h E h {\displaystyle \{1,{\bar {1}},2,{\bar {2}},\dots ,k,{\bar {k}}\}=\sqcup _{h}E_{h}} in the basis ( v j 1 ⊗ ⋯ ⊗ v j k ) {\displaystyle (v_{j_{1}}\otimes \cdots \otimes v_{j_{k}})} :19
This matrix element is one if all indices corresponding to any given partition subset coincide, and zero otherwise. For example, the action of a Temperley–Lieb generator is
Let n ≥ 2 k {\displaystyle n\geq 2k} be integer. Let us take V {\displaystyle V} to be the natural permutation representation of the symmetric group S n {\displaystyle S_{n}} . This n {\displaystyle n} -dimensional representation is a sum of two irreducible representations: the standard and trivial representations, V = [ n − 1 , 1 ] ⊕ [ n ] {\displaystyle V=[n-1,1]\oplus [n]} .
Then the partition algebra P k ( n ) {\displaystyle P_{k}(n)} is the centralizer of the action of S n {\displaystyle S_{n}} on the tensor product space V ⊗ k {\displaystyle V^{\otimes k}} ,
Moreover, as a bimodule over P k ( n ) × S n {\displaystyle P_{k}(n)\times S_{n}} , the tensor product space decomposes into irreducible representations as20
where [ n − | λ | , λ ] {\displaystyle [n-|\lambda |,\lambda ]} is a Young diagram of size n {\displaystyle n} built by adding a first row to λ {\displaystyle \lambda } , and V [ n − | λ | , λ ] {\displaystyle V_{[n-|\lambda |,\lambda ]}} is the corresponding Specht module of S n {\displaystyle S_{n}} .
The duality between the symmetric group and the partition algebra generalizes the original Schur-Weyl duality between the general linear group and the symmetric group. There are other generalizations. In the relevant tensor product spaces, we write V n {\displaystyle V_{n}} for an irreducible n {\displaystyle n} -dimensional representation of the first group or algebra:
Halverson, Tom; Jacobson, Theodore N. (2020). "Set-partition tableaux and representations of diagram algebras". Algebraic Combinatorics. 3 (2): 509–538. arXiv:1808.08118v2. doi:10.5802/alco.102. ISSN 2589-5486. S2CID 119167251. https://alco.centre-mersenne.org/item/ALCO_2020__3_2_509_0 ↩
Halverson, Tom; Ram, Arun (2005). "Partition algebras". European Journal of Combinatorics. 26 (6): 869–921. arXiv:math/0401314v2. doi:10.1016/j.ejc.2004.06.005. S2CID 1168919. https://linkinghub.elsevier.com/retrieve/pii/S0195669804000976 ↩
Colmenarejo, Laura; Orellana, Rosa; Saliola, Franco; Schilling, Anne; Zabrocki, Mike (2020). "An insertion algorithm on multiset partitions with applications to diagram algebras". Journal of Algebra. 557: 97–128. arXiv:1905.02071v2. doi:10.1016/j.jalgebra.2020.04.010. S2CID 146121089. https://linkinghub.elsevier.com/retrieve/pii/S0021869320301873 ↩
Jacobsen, Jesper Lykke; Ribault, Sylvain; Saleur, Hubert (2022). "Spaces of states of the two-dimensional O(n) and Potts models". arXiv:2208.14298. {{cite journal}}: Cite journal requires |journal= (help) /wiki/ArXiv_(identifier) ↩
Mishra, Ashish; Srivastava, Shraddha (2021). "Jucys–Murphy elements of partition algebras for the rook monoid". International Journal of Algebra and Computation. 31 (5): 831–864. arXiv:1912.10737v3. doi:10.1142/S0218196721500399. ISSN 0218-1967. S2CID 209444954. https://www.worldscientific.com/doi/abs/10.1142/S0218196721500399 ↩
Maltcev, Victor (2007-03-16). "On a new approach to the dual symmetric inverse monoid I*X". arXiv:math/0703478v1. /wiki/ArXiv_(identifier) ↩
Daugherty, Zajj; Orellana, Rosa (2014). "The quasi-partition algebra". Journal of Algebra. 404: 124–151. arXiv:1212.2596v1. doi:10.1016/j.jalgebra.2013.11.028. S2CID 117848394. https://linkinghub.elsevier.com/retrieve/pii/S0021869314000477 ↩
Orellana, Rosa; Saliola, Franco; Schilling, Anne; Zabrocki, Mike (2021-12-27). "Plethysm and the algebra of uniform block permutations". arXiv:2112.13909v1 [math.CO]. /wiki/ArXiv_(identifier) ↩
Halverson, Tom; delMas, Elise (2014-01-02). "Representations of the Rook-Brauer Algebra". Communications in Algebra. 42 (1): 423–443. arXiv:1206.4576v2. doi:10.1080/00927872.2012.716120. ISSN 0092-7872. S2CID 38469372. http://www.tandfonline.com/doi/abs/10.1080/00927872.2012.716120 ↩
Kudryavtseva, Ganna; Mazorchuk, Volodymyr (2008). "Schur–Weyl dualities for symmetric inverse semigroups". Journal of Pure and Applied Algebra. 212 (8): 1987–1995. arXiv:math/0702864. doi:10.1016/j.jpaa.2007.12.004. S2CID 13564450. https://linkinghub.elsevier.com/retrieve/pii/S0022404908000169 ↩
Benkart, Georgia; Moon, Dongho (2013-05-28). "Planar Rook Algebras and Tensor Representations of 𝔤𝔩(1 | 1)". Communications in Algebra. 41 (7): 2405–2416. arXiv:1201.2482v1. doi:10.1080/00927872.2012.658533. ISSN 0092-7872. S2CID 119125305. http://www.tandfonline.com/doi/abs/10.1080/00927872.2012.658533 ↩
Cox, Anton; Visscher, De; Doty, Stephen; Martin, Paul (2007-09-06). "On the blocks of the walled Brauer algebra". arXiv:0709.0851v1 [math.RT]. /wiki/ArXiv_(identifier) ↩