Banach lattices are extremely common in functional analysis, and "every known example [in 1948] of a Banach space [was] also a vector lattice."1 In particular:
Examples of non-lattice Banach spaces are now known; James' space is one such.2
The continuous dual space of a Banach lattice is equal to its order dual.3
Every Banach lattice admits a continuous approximation to the identity.4
A Banach lattice satisfying the additional condition f , g ≥ 0 ⇒ ‖ f + g ‖ = ‖ f ‖ + ‖ g ‖ {\displaystyle {f,g\geq 0}\Rightarrow \|f+g\|=\|f\|+\|g\|} is called an abstract (L)-space. Such spaces, under the assumption of separability, are isomorphic to closed sublattices of L1([0,1]).5 The classical mean ergodic theorem and Poincaré recurrence generalize to abstract (L)-spaces.6
Birkhoff 1948, p. 246. - Birkhoff, Garrett (1948). Lattice Theory. AMS Colloquium Publications 25 (Revised ed.). New York City: AMS. hdl:2027/iau.31858027322886 – via HathiTrust. https://hdl.handle.net/2027/iau.31858027322886 ↩
Kania, Tomasz (12 April 2017). Answer to "Banach space that is not a Banach lattice" (accessed 13 August 2022). Mathematics StackExchange. StackOverflow. https://math.stackexchange.com/a/2230649 ↩
Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135 ↩
Birkhoff 1948, p. 251. - Birkhoff, Garrett (1948). Lattice Theory. AMS Colloquium Publications 25 (Revised ed.). New York City: AMS. hdl:2027/iau.31858027322886 – via HathiTrust. https://hdl.handle.net/2027/iau.31858027322886 ↩
Birkhoff 1948, pp. 250, 254. - Birkhoff, Garrett (1948). Lattice Theory. AMS Colloquium Publications 25 (Revised ed.). New York City: AMS. hdl:2027/iau.31858027322886 – via HathiTrust. https://hdl.handle.net/2027/iau.31858027322886 ↩
Birkhoff 1948, pp. 269–271. - Birkhoff, Garrett (1948). Lattice Theory. AMS Colloquium Publications 25 (Revised ed.). New York City: AMS. hdl:2027/iau.31858027322886 – via HathiTrust. https://hdl.handle.net/2027/iau.31858027322886 ↩