Just like conformal field theory in general, logarithmic conformal field theory has been particularly well-studied in two dimensions.23 Some two-dimensional logarithmic CFTs have been solved:
Hogervorst, Matthijs; Paulos, Miguel; Vichi, Alessandro (2016-05-12). "The ABC (in any D) of Logarithmic CFT". Journal of High Energy Physics. 2017 (10). arXiv:1605.03959v1. doi:10.1007/JHEP10(2017)201. S2CID 62821354. /wiki/ArXiv_(identifier) ↩
Gurarie, V. (1993-03-29). "Logarithmic Operators in Conformal Field Theory". Nuclear Physics B. 410 (3): 535–549. arXiv:hep-th/9303160. Bibcode:1993NuPhB.410..535G. doi:10.1016/0550-3213(93)90528-W. S2CID 17344227. /wiki/ArXiv_(identifier) ↩
Creutzig, Thomas; Ridout, David (2013-03-04). "Logarithmic Conformal Field Theory: Beyond an Introduction". Journal of Physics A: Mathematical and Theoretical. 46 (49): 494006. arXiv:1303.0847v3. Bibcode:2013JPhA...46W4006C. doi:10.1088/1751-8113/46/49/494006. S2CID 118554516. /wiki/ArXiv_(identifier) ↩
Gaberdiel, Matthias R.; Kausch, Horst G. (1999). "A Local Logarithmic Conformal Field Theory". Nuclear Physics B. 538 (3): 631–658. arXiv:hep-th/9807091. Bibcode:1999NuPhB.538..631G. doi:10.1016/S0550-3213(98)00701-9. S2CID 15554654. /wiki/ArXiv_(identifier) ↩
Schomerus, Volker; Saleur, Hubert (2006). "The GL(1 - 1) WZW model: From Supergeometry to Logarithmic CFT". Nucl. Phys. B. 734 (3): 221–245. arXiv:hep-th/0510032. Bibcode:2006NuPhB.734..221S. doi:10.1016/j.nuclphysb.2005.11.013. S2CID 16530989. /wiki/ArXiv_(identifier) ↩
Runkel, Ingo; Gaberdiel, Matthias R.; Wood, Simon (2012-01-30). "Logarithmic bulk and boundary conformal field theory and the full centre construction". arXiv:1201.6273v1 [hep-th]. /wiki/ArXiv_(identifier) ↩