A network as a system is composed of (or defined by) two different sets: one set of units (nodes, vertices, actors) and one set of links between the units. Using both sets, it is possible to create a graph, describing the structure of the network.
During blockmodeling, the researcher is faced with two problems: how to partition the units (e.g., how to determine the clusters (or classes), that then form vertices in a blockmodel) and then how to determine the links in the blockmodel (and at the same time the values of these links).
Blockmodeling can thus be defined as a set of approaches for partitioning units into clusters (also known as positions) and links into blocks, which are further defined by the newly obtained clusters. A block (also blockmodel) is defined as a submatrix, that shows interconnectivity (links) between nodes, present in the same or different clusters. Each of these positions in the cluster is defined by a set of (in)direct ties to and from other social positions. These links (connections) can be directed or undirected; there can be multiple links between the same pair of objects or they can have weights on them. If there are not any multiple links in a network, it is called a simple network.: 8
Equivalence can have two basic approaches: the equivalent units have the same connection pattern to the same neighbors or these units have same or similar connection pattern to different neighbors. If the units are connected to the rest of network in identical ways, then they are structurally equivalent. Units can also be regularly equivalent, when they are equivalently connected to equivalent others.
With blockmodeling, it is necessary to consider the issue of results being affected by measurement errors in the initial stage of acquiring the data.
Regarding what kind of network is undergoing blockmodeling, a different approach is necessary. Networks can be one–mode or two–mode. In the former all units can be connected to any other unit and where units are of the same type, while in the latter the units are connected only to the unit(s) of a different type.: 6–10 Regarding relationships between units, they can be single–relational or multi–relational networks. Further more, the networks can be temporal or multilevel and also binary (only 0 and 1) or signed (allowing negative ties)/values (other values are possible) networks.
Indirect blockmodeling approaches, where partitioning is dealt with as a traditional cluster analysis problem (measuring (dis)similarity results in a (dis)similarity matrix), are:
According to Brusco and Steinley (2011), the blockmodeling can be categorized (using a number of dimensions):
Computer programs can partition the social network according to pre-set conditions.: 333 When empirical blocks can be reasonably approximated in terms of ideal blocks, such blockmodels can be reduced to a blockimage, which is a representation of the original network, capturing its underlying 'functional anatomy'. Thus, blockmodels can "permit the data to characterize their own structure", and at the same time not seek to manifest a preconceived structure imposed by the researcher.
Blockmodels can be created indirectly or directly, based on the construction of the criterion function. Indirect construction refers to a function, based on "compatible (dis)similarity measure between paris of units", while the direct construction is "a function measuring the fit of real blocks induced by a given clustering to the corresponding ideal blocks with perfect relations within each cluster and between clusters according to the considered types of connections (equivalence)".
Patrick Doreian, Positional Analysis and Blockmodeling. Encyclopedia of Complexity and Systems Science. DOI: https://doi.org/10.1007/978-0-387-30440-3_412 Archived 2023-02-04 at the Wayback Machine. /wiki/Patrick_Doreian
Patrick Doreian, An Intuitive Introduction to Blockmodeling with Examples, BMS: Bulletin of Sociological Methodology / Bulletin de Méthodologie Sociologique, January, 1999, No. 61 (January, 1999), pp. 5–34. /wiki/Patrick_Doreian
Anuška Ferligoj: Blockmodeling, http://mrvar.fdv.uni-lj.si/sola/info4/nusa/doc/blockmodeling-2.pdf Archived 2021-08-12 at the Wayback Machine /wiki/Anu%C5%A1ka_Ferligoj
Bonacich, Phillip; McConaghy, Maureen J. (1980). "The Algebra of Blockmodeling". Sociological Methodology. 11: 489–532. doi:10.2307/270873. /wiki/Doi_(identifier)
Patrick Doreian, An Intuitive Introduction to Blockmodeling with Examples, BMS: Bulletin of Sociological Methodology / Bulletin de Méthodologie Sociologique, January, 1999, No. 61 (January, 1999), pp. 5–34. /wiki/Patrick_Doreian
Doreian, Patrick; Batagelj, Vladimir; Ferligoj, Anuška (2005). Generalized Blockmodeling. Cambridge University Press. ISBN 0-521-84085-6. 0-521-84085-6
Batagelj, Vladimir (1999). "Generalized Blockmodeling". Informatica. 23: 501–506.
"WEBER, M. (2007), "Introducing blockmodeling to input-output analysis". 16th International I-Ot Conf, Istanbul, Turkey". Archived from the original on 2021-08-23. Retrieved 2021-08-23. https://www.iioa.org/conferences/16th/files/Papers/Weber%20Introducing%20blockmodeling%20to%20input-output%20analysis.doc
Miha Matjašič, Marjan Cugmas and Aleš Žiberna, blockmodeling: An R package for generalized blockmodeling, Metodološki zvezki, 17(2), 2020, 49–66. /w/index.php?title=Miha_Matja%C5%A1i%C4%8D&action=edit&redlink=1
Batagelj, Vladimir (1997). "Notes on blockmodeling". Social Networks. 19: 143–155.
Miha Matjašič, Marjan Cugmas and Aleš Žiberna, blockmodeling: An R package for generalized blockmodeling, Metodološki zvezki, 17(2), 2020, 49–66. /w/index.php?title=Miha_Matja%C5%A1i%C4%8D&action=edit&redlink=1
Miha Matjašič, Marjan Cugmas and Aleš Žiberna, blockmodeling: An R package for generalized blockmodeling, Metodološki zvezki, 17(2), 2020, 49–66. /w/index.php?title=Miha_Matja%C5%A1i%C4%8D&action=edit&redlink=1
Bonacich, Phillip; McConaghy, Maureen J. (1980). "The Algebra of Blockmodeling". Sociological Methodology. 11: 489–532. doi:10.2307/270873. /wiki/Doi_(identifier)
Brian Joseph Ball, Blockmodeling techniques for complex networks: doctoral dissertation. University of Michigan, 2014.
Miha Matjašič, Marjan Cugmas and Aleš Žiberna, blockmodeling: An R package for generalized blockmodeling, Metodološki zvezki, 17(2), 2020, 49–66. /w/index.php?title=Miha_Matja%C5%A1i%C4%8D&action=edit&redlink=1
Bonacich, Phillip; McConaghy, Maureen J. (1980). "The Algebra of Blockmodeling". Sociological Methodology. 11: 489–532. doi:10.2307/270873. /wiki/Doi_(identifier)
Anuška Ferligoj: Blockmodeling, http://mrvar.fdv.uni-lj.si/sola/info4/nusa/doc/blockmodeling-2.pdf Archived 2021-08-12 at the Wayback Machine /wiki/Anu%C5%A1ka_Ferligoj
Patrick Doreian, An Intuitive Introduction to Blockmodeling with Examples, BMS: Bulletin of Sociological Methodology / Bulletin de Méthodologie Sociologique, January, 1999, No. 61 (January, 1999), pp. 5–34. /wiki/Patrick_Doreian
Žnidaršič, Anja; Doreian, Patrick; Ferligoj, Anuška (2012). "Absent Ties in Social Networks, their Treatments, and Blockmodeling Outcomes". Metodološki zvezki. 9 (2): 119–138.
Doreian, Patrick; Batagelj, Vladimir; Ferligoj, Anuška (2005). Generalized Blockmodeling. Cambridge University Press. ISBN 0-521-84085-6. 0-521-84085-6
Miha Matjašič, Marjan Cugmas and Aleš Žiberna, blockmodeling: An R package for generalized blockmodeling, Metodološki zvezki, 17(2), 2020, 49–66. /w/index.php?title=Miha_Matja%C5%A1i%C4%8D&action=edit&redlink=1
Patrick Doreian, An Intuitive Introduction to Blockmodeling with Examples, BMS: Bulletin of Sociological Methodology / Bulletin de Méthodologie Sociologique, January, 1999, No. 61 (January, 1999), pp. 5–34. /wiki/Patrick_Doreian
Anuška Ferligoj: Blockmodeling, http://mrvar.fdv.uni-lj.si/sola/info4/nusa/doc/blockmodeling-2.pdf Archived 2021-08-12 at the Wayback Machine /wiki/Anu%C5%A1ka_Ferligoj
Doreian, Patrick; Batagelj, Vladimir; Ferligoj, Anuška (2005). Generalized Blockmodeling. Cambridge University Press. ISBN 0-521-84085-6. 0-521-84085-6
Miha Matjašič, Marjan Cugmas and Aleš Žiberna, blockmodeling: An R package for generalized blockmodeling, Metodološki zvezki, 17(2), 2020, 49–66. /w/index.php?title=Miha_Matja%C5%A1i%C4%8D&action=edit&redlink=1
Patrick Doreian, An Intuitive Introduction to Blockmodeling with Examples, BMS: Bulletin of Sociological Methodology / Bulletin de Méthodologie Sociologique, January, 1999, No. 61 (January, 1999), pp. 5–34. /wiki/Patrick_Doreian
Žiberna, Aleš (2013). "Generalized blockmodeling of sparse networks". Metodološki zvezki. 10 (2): 99–119.
Brusco, Michael; Steinley, Douglas (2011). "A tabu search heuristic for deterministic two-mode blockmodeling". Psychometrika. 76: 612–633.
Brusco, Michael; Doreian, Patrick; Steinley, Douglas; Satornino, Cinthia B. (2013). "Multiobjective blockmodeling for social network analysis". Psychometrika. 78 (3): 498–525. doi:10.1007/S11336-012-9313-1. /wiki/Doi_(identifier)
Patrick Doreian, Positional Analysis and Blockmodeling. Encyclopedia of Complexity and Systems Science. DOI: https://doi.org/10.1007/978-0-387-30440-3_412 Archived 2023-02-04 at the Wayback Machine. /wiki/Patrick_Doreian
Nooy, Wouter de; Mrvar, Andrej; Batagelj, Vladimir (2018). Exploratory Social Network Analysis with Pajek. Revised and Expanded Edition for Updated Software. Third Edition. Cambridge University Press. ISBN 978-1-108-47414-6. 978-1-108-47414-6
Nordlund, Carl (2019). "Direct blockmodeling of valued and binary networks: a dichotomization-free approach". Social Networks. 61: 128–143. arXiv:1910.10484. doi:10.1016/j.socnet.2019.10.004. S2CID 204838377. /wiki/ArXiv_(identifier)
Arabie, Phipps; Boorman, Scott A.; Levitt, Paul R. (1978). "Constructing Blockmodels: How and Why". Journal of Mathematical Psychology. 17: 21–63. doi:10.2307/270873. JSTOR 270873. /wiki/Doi_(identifier)
Batagelj, Vladimir; Mrvar, andrej; Ferligoj, Anuška; Doreian, Patrick (2004). "Generalized Blockmodeling with Pajek". Metodološki zvezki. 1 (2): 455–467. Archived from the original on 2022-03-22. Retrieved 2023-01-07. https://www.dlib.si/stream/URN:NBN:SI:doc-IK51U9CM/895b643a-1b1d-468f-8970-096c9004202e/PDF
Doreian, Patrick; Batagelj, Vladimir; Ferligoj, Anuška (2005). Generalized Blockmodeling. Cambridge University Press. ISBN 0-521-84085-6. 0-521-84085-6
"STATS.ox.ac.uk – Social Network Analysis". Archived from the original on 2021-08-18. Retrieved 2021-08-18. https://www.stats.ox.ac.uk/~snijders/socnet.htm
Steiber, Steven R. (1981). "Building better blockmodels: A non–hierarchical extension of CONCOR with applications to regression analysis". Mid–American Review of Sociology. VI: 17–40.
Batagelj, Vladimir; Mrvar, Andrej; Ferligoj, Anuška; Doreian, Patrick (2004). "Generalized Blockmodeling with Pajek". Metodološki zvezki. 1 (2): 455–467.
Batagelj, Vladimir; Mrvar, Andrej; Ferligoj, Anuška; Doreian, Patrick (2004). "Generalized Blockmodeling with Pajek". Metodološki zvezki. 1 (2): 455–467.
Batagelj, Vladimir; Mrvar, Andrej; Ferligoj, Anuška; Doreian, Patrick (2004). "Generalized Blockmodeling with Pajek". Metodološki zvezki. 1 (2): 455–467.
Žnidaršič, Anja; Doreian, Patrick; Ferligoj, Anuška (2012). "Absent Ties in Social Networks, their Treatments, and Blockmodeling Outcomes". Metodološki zvezki. 9 (2): 119–138.
Cran.R–project.org – Package 'blockmodeling' http://cran.r-project.org/web/packages/blockmodeling/blockmodeling.pdf
Miha Matjašič, Marjan Cugmas and Aleš Žiberna, blockmodeling: An R package for generalized blockmodeling, Metodološki zvezki, 17(2), 2020, 49–66. /w/index.php?title=Miha_Matja%C5%A1i%C4%8D&action=edit&redlink=1
"STATS.ox.ac.uk – Social Network Analysis". Archived from the original on 2021-08-18. Retrieved 2021-08-18. https://www.stats.ox.ac.uk/~snijders/socnet.htm