Matoušek, Jiří (2002), Lectures on Discrete Geometry, Graduate Texts in Mathematics, Springer-Verlag, p. 30, ISBN 978-0-387-95373-1 978-0-387-95373-1
Matoušek, Jiří (2002), Lectures on Discrete Geometry, Graduate Texts in Mathematics, Springer-Verlag, p. 30, ISBN 978-0-387-95373-1 978-0-387-95373-1
Tóth, Géza; Valtr, Pavel (2005), "The Erdős-Szekeres theorem: upper bounds and related results", Combinatorial and computational geometry, Math. Sci. Res. Inst. Publ., vol. 52, Cambridge: Cambridge Univ. Press, pp. 557–568, MR 2178339 /wiki/MR_(identifier)
Deĭneko, Vladimir G.; Hoffmann, Michael; Okamoto, Yoshio; Woeginger, Gerhard J. (2006), "The traveling salesman problem with few inner points", Operations Research Letters, 34 (1): 106–110, doi:10.1016/j.orl.2005.01.002, MR 2186082 /wiki/Gerhard_J._Woeginger
Mulzer, Wolfgang; Rote, Günter (2008), "Minimum-weight triangulation is NP-hard", Journal of the ACM, 55 (2), Article A11, arXiv:cs.CG/0601002, doi:10.1145/1346330.1346336 /wiki/Journal_of_the_ACM
Klincsek, G. T. (1980), "Minimal triangulations of polygonal domains", Annals of Discrete Mathematics, 9: 121–123, doi:10.1016/s0167-5060(08)70044-x, ISBN 9780444861115 9780444861115
Erdős, Paul; Szekeres, George (1935), "A combinatorial problem in geometry", Compositio Mathematica, 2: 463–470 /wiki/Paul_Erd%C5%91s
Valtr, P. (1995), "Probability that n random points are in convex position", Discrete & Computational Geometry, 13 (3–4): 637–643, doi:10.1007/BF02574070, MR 1318803 /wiki/Discrete_%26_Computational_Geometry
Forge, David; Las Vergnas, Michel; Schuchert, Peter (2001), "10 points in dimension 4 not projectively equivalent to the vertices of a convex polytope", Combinatorial geometries (Luminy, 1999), European Journal of Combinatorics, 22 (5): 705–708, doi:10.1006/eujc.2000.0490, MR 1845494 /wiki/Michel_Las_Vergnas