The IUPAC nomenclature of the homologue series of all-carbon propellanes would be called tricyclo[x.y.z.01,(x+2)]alkane. More common in literature is the notation [x.y.z]propellane means the member of the family whose rings have x, y, and z carbons, not counting the two bridgeheads; or x + 2, y + 2, and z + 2 carbons, counting them. The chemical formula is therefore C2+x+y+zH2(x+y+z). The minimum value for x, y, and z is 1, meaning three fused cyclopropyl-rings forming the [1.1.1]propellane. There is no structural ordering between the rings; for example, [1.3.2]propellane is the same substance as [3.2.1]propellane. Therefore, it is customary to sort the indices in decreasing order, x ≥ y ≥ z.
Further, heterosubstituted propellanes or structurally embedded propellane moieties exist and have been synthesised and follow a more complex nomenclature (see below).
The resulting strain causes such compounds to be unstable and highly reactive. The interbridgehead C-C bond is easily broken (even spontaneously) to yield less-strained bicyclic or even monocyclic hydrocarbons. This so-called strain-release chemistry is used in strategies to access otherwise hard-to-obtain structures.
Surprisingly, the most strained member [1.1.1] is far more stable than the other small ring members ([2.1.1], [2.2.1], [2.2.2], [3.2.1], [3.1.1], and [4.1.1]), which can be explained by special bonding situation of the interbridgehead bond.
The bonding situation of small-ring propellanes, such as [n.1.1]propellanes, is topic of debate. Recent computational studies explain the interbridgehead bond as a Charge-shift bond possessing an unusual positive Laplace operator
∇
2
{\displaystyle \nabla ^{2}}
of the electron density
ρ
{\displaystyle \rho }
. Studies by Sterling et al. suggest delocalisation effects onto the three-membered bridges relaxing Pauli-repulsion and thus stabilising the propellane core.
Propellanes, especially the synthetically studied [1.1.1]Propellane, is known to possess omniphilic reactivity. Anions and radicals add towards the interbridgehead bond resulting in bicyclo[1.1.1]pentyl-units. In contrary, cations and metals decompose the tricyclic core towards monocyclic systems by opening of the bridged bonds forming exo-methylene cyclobutanes. For [3.1.1]propellane only radical addition is reported. The reactivity of other propellanes is far less explored and their reactivity profile is less clear.
The smaller-cycle propellanes are difficult to synthesize because of their strain. Larger members are more easily obtained. Weber and Cook described in 1978 a general method which should yield [n.3.3]propellanes for any n ≥ 3.
Dilmaç, A. M.; Spuling, E.; de Meijere, A.; Bräse, S. (2017). "Propellanes—From a Chemical Curiosity to "Explosive" Materials and Natural Products". Angew. Chem. Int. Ed. 56 (21): 5684–5718. doi:10.1002/anie.201603951. PMID 27905166. /wiki/Doi_(identifier)
Osmont; et al. (2008). "Physicochemical Properties and Thermochemistry of Propellanes". Energy and Fuels. 22 (4): 2241–2257. doi:10.1021/ef8000423. /wiki/Doi_(identifier)
Dilmaç, A. M.; Spuling, E.; de Meijere, A.; Bräse, S. (2017). "Propellanes—From a Chemical Curiosity to "Explosive" Materials and Natural Products". Angew. Chem. Int. Ed. 56 (21): 5684–5718. doi:10.1002/anie.201603951. PMID 27905166. /wiki/Doi_(identifier)
Altman, J.; Babad, E.; Itzchaki, J.; Ginsburg, D. (1966). "Propellanes—I". Tetrahedron. 22: 279–304. doi:10.1016/S0040-4020(01)82189-X. /wiki/Doi_(identifier)
Wiberg, Kenneth B. (1986). "The Concept of Strain in Organic Chemistry". Angew. Chem. Int. Ed. Engl. 25 (4): 312–322. doi:10.1002/anie.198603121. /wiki/Doi_(identifier)
Michl, Josef; Radziszewski, George J.; Downing, John W.; Wiberg, Kenneth B.; Walker, Frederick H.; Miller, Robert D.; Kovacic, Peter; Jawdosiuk, Mikolaj; Bonačić-Koutecký, Vlasta (1983). "Highly strained single and double bonds". Pure Appl. Chem. 55 (2): 315–321. doi:10.1351/pac198855020315. https://doi.org/10.1351%2Fpac198855020315
Shaik, Sason; Danovich, David; Wu, Wei; Hiberty, Philippe C. (2009). "Charge-shift bonding and its manifestations in chemistry". Nature Chemistry. 1 (6): 443–449. doi:10.1038/nchem.327. PMID 21378912. /wiki/Doi_(identifier)
Sterling, Alistair J.; Dürr, Alexander B.; Smith, Russel C.; Anderson, Edward A.; Duarte, Fernanda (2020). "Rationalizing the diverse reactivity of [1.1.1]propellane through σ–π-delocalization". Chem. Sci. 11 (19): 4895–4903. doi:10.1039/D0SC01386B. PMC 8159217. PMID 34122945. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159217
Wiberg, Kenneth B.; Waddell, Sherman T. (1990). "Reactions of [1.1.1]propellane". J. Am. Chem. Soc. 112 (6): 2194–2216. doi:10.1021/ja00162a022. /wiki/Doi_(identifier)
Fuchs, Josef; Szeimies, Günter (1992). "Synthese von [n.1.1]Propellanen (n = 2, 3, 4)". Chem. Ber. 125 (11): 2517–2522. doi:10.1002/cber.19921251126. /wiki/Doi_(identifier)
Frank, Nils; Nugent, Jeremy; Shire, Bethany R.; Pickford, Helena D.; Rabe, Patrick; Sterling, Alistair J.; Zarganes-Tzitzikas, Tryfon; Grimes, Thomas; Thompson, Amber L.; Smith, Russell C.; Schofield, Christopher J.; Brennan, Paul E.; Duarte, Fernanda; Anderson, Edward A. (2022). "Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane". Nature. 611 (7937): 721–726. doi:10.1038/s41586-022-05290-z. PMID 36108675. S2CID 252310498. /wiki/Doi_(identifier)
Kaszynski, Piotr; Michl, Josef (1988). "[n]Staffanes: a molecular-size "Tinkertoy" construction set for nanotechnology. Preparation of end-functionalized telomers and a polymer of [1.1.1]propellane". J. Am. Chem. Soc. 110 (15): 5225–5226. doi:10.1021/ja00223a070. /wiki/J._Am._Chem._Soc.
Wiberg, Kenneth B.; Burgmaier, George J. (1972). "Tricyclo[3.2.1.01,5]octane. A 3,2,1-Propellane". J. Am. Chem. Soc. 94 (21): 7396–7401. doi:10.1021/ja00776a022. /wiki/Journal_of_the_American_Chemical_Society
Weber, Robert W.; Cook, James M. (1978). "General method for the synthesis of [n.3.3]propellanes, n ≥ 3". Can. J. Chem. 56 (2): 189–192. doi:10.1139/v78-030. https://doi.org/10.1139%2Fv78-030
Wiberg, Kenneth B.; Walker, Frederick H. (1982). "[1.1.1]Propellane". J. Am. Chem. Soc. 104 (19): 5239–5240. doi:10.1021/ja00383a046. /wiki/J._Am._Chem._Soc.
Kaszynski, Piotr; Michl, Josef (1988). "[n]Staffanes: a molecular-size "Tinkertoy" construction set for nanotechnology. Preparation of end-functionalized telomers and a polymer of [1.1.1]propellane". J. Am. Chem. Soc. 110 (15): 5225–5226. doi:10.1021/ja00223a070. /wiki/J._Am._Chem._Soc.
Stepan, Antonia F.; et al. (2012). "Application of the Bicyclo[1.1.1]pentane Motif as a Nonclassical Phenyl Ring Bioisostere in the Design of a Potent and Orally Active γ-Secretase Inhibitor". J. Med. Chem. 55 (7): 3414–3424. doi:10.1021/jm300094u. PMID 22420884. /wiki/Doi_(identifier)
Jarosch, Oliver; Szeimies, Günter (2003). "Thermal Behavior of [2.1.1]Propellane: A DFT/Ab Initio Study". J. Org. Chem. 68 (10): 3797–3801. doi:10.1021/jo020741d. PMID 12737556. /wiki/J._Org._Chem.
Walker, Frederick H.; Wiberg, Kenneth B.; Michl, Josef (1982). "[2.2.1]Propellane". J. Am. Chem. Soc. 104 (7): 2056. doi:10.1021/ja00371a059. /wiki/Journal_of_the_American_Chemical_Society
Gassman, P. G.; Proehl, G. S. (1980). "[3.1.1]Propellane". J. Am. Chem. Soc. 102 (22): 6862. doi:10.1021/ja00542a040. /wiki/Journal_of_the_American_Chemical_Society
Fuchs, Josef; Szeimies, Günter (1992). "Synthese von [n.1.1]Propellanen (n = 2, 3, 4)". Chem. Ber. 125 (11): 2517–2522. doi:10.1002/cber.19921251126. /wiki/Doi_(identifier)
Frank, Nils; Nugent, Jeremy; Shire, Bethany R.; Pickford, Helena D.; Rabe, Patrick; Sterling, Alistair J.; Zarganes-Tzitzikas, Tryfon; Grimes, Thomas; Thompson, Amber L.; Smith, Russell C.; Schofield, Christopher J.; Brennan, Paul E.; Duarte, Fernanda; Anderson, Edward A. (2022). "Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane". Nature. 611 (7937): 721–726. doi:10.1038/s41586-022-05290-z. PMID 36108675. S2CID 252310498. /wiki/Doi_(identifier)
Frank, Nils; Nugent, Jeremy; Shire, Bethany R.; Pickford, Helena D.; Rabe, Patrick; Sterling, Alistair J.; Zarganes-Tzitzikas, Tryfon; Grimes, Thomas; Thompson, Amber L.; Smith, Russell C.; Schofield, Christopher J.; Brennan, Paul E.; Duarte, Fernanda; Anderson, Edward A. (2022). "Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane". Nature. 611 (7937): 721–726. doi:10.1038/s41586-022-05290-z. PMID 36108675. S2CID 252310498. /wiki/Doi_(identifier)
Wiberg, Kenneth B.; Burgmaier, George J. (1969). "Tricyclo[3.2.1.01,5]octane". Tetrahedron Letters. 10 (5): 317–319. doi:10.1016/s0040-4039(01)87681-4. /wiki/Tetrahedron_Letters
Gassman, Paul G.; Topp, Alwin; Keller, John W. (1969). "Tricyclo[3.2.1.01,5]octane – a highly strained "propellerane"". Tetrahedron Letters. 10 (14): 1093–1095. doi:10.1016/s0040-4039(01)97748-2. /wiki/Doi_(identifier)
Wiberg, Kenneth B.; Burgmaier, George J. (1972). "Tricyclo[3.2.1.01,5]octane. A 3,2,1-Propellane". J. Am. Chem. Soc. 94 (21): 7396–7401. doi:10.1021/ja00776a022. /wiki/Journal_of_the_American_Chemical_Society
Aue, D. H.; Reynolds, R. N. (1974). "Reactions of a highly strained propellane. Tetracyclo[4.2.1.12,5.O1,6]decane". J. Org. Chem. 39 (15): 2315. doi:10.1021/jo00929a051. /wiki/J._Org._Chem.
Wiberg, Kenneth B.; Pratt, William E.; Bailey, William F. (1977). "Reaction of 1,4-diiodonorbornane, 1,4-diiodobicyclo[2.2.2]octane, and 1,5-diiodobicyclo[3.2.1]octane with butyllithium. Convenient preparative routes to the [2.2.2]- and [3.2.1]propellanes". J. Am. Chem. Soc. 99 (7): 2297–2302. doi:10.1021/ja00449a045. /wiki/Journal_of_the_American_Chemical_Society
Michl, Josef; Radziszewski, George J.; Downing, John W.; Wiberg, Kenneth B.; Walker, Frederick H.; Miller, Robert D.; Kovacic, Peter; Jawdosiuk, Mikolaj; Bonačić-Koutecký, Vlasta (1983). "Highly strained single and double bonds". Pure Appl. Chem. 55 (2): 315–321. doi:10.1351/pac198855020315. https://doi.org/10.1351%2Fpac198855020315
Hamon, David P. G.; Trenerry, V. Craige (1981). "Carbenoid insertion reactions: formation of [4.1.1]propellane". J. Am. Chem. Soc. 103 (16): 4962–4965. doi:10.1021/ja00406a059. /wiki/Journal_of_the_American_Chemical_Society
Szeimies-Seebach, Ursula; Harnish, J.; Szeimies, Günter; Meerssche, M. V.; Germain, G.; Declerq, J. P. (1978). "Existence of a New C6H6 Isomer: Tricyclo[3.1.0.02,6]hex-1(6)-ene". Angew. Chem. Int. Ed. Engl. 17 (11): 848. doi:10.1002/anie.197808481. /wiki/Angew._Chem._Int._Ed._Engl.
Szeimies-Seebach, Ursula; Szeimies, Günter (1978). "A facile route to the [4.1.1]propellane system". J. Am. Chem. Soc. 100 (12): 3966–3967. doi:10.1021/ja00480a072. /wiki/Journal_of_the_American_Chemical_Society
Wiberg, Kenneth B.; Pratt, William E.; Bailey, William F. (1977). "Reaction of 1,4-diiodonorbornane, 1,4-diiodobicyclo[2.2.2]octane, and 1,5-diiodobicyclo[3.2.1]octane with butyllithium. Convenient preparative routes to the [2.2.2]- and [3.2.1]propellanes". J. Am. Chem. Soc. 99 (7): 2297–2302. doi:10.1021/ja00449a045. /wiki/Journal_of_the_American_Chemical_Society
Eaton, Philip E.; Temme, George H. (1973). "[2.2.2]Propellane system". J. Am. Chem. Soc. 95 (22): 7508–7510. doi:10.1021/ja00803a052. /wiki/J._Am._Chem._Soc.
Weber, Robert W.; Cook, James M. (1978). "General method for the synthesis of [n.3.3]propellanes, n ≥ 3". Can. J. Chem. 56 (2): 189–192. doi:10.1139/v78-030. https://doi.org/10.1139%2Fv78-030
Weber, Robert W.; Cook, James M. (1978). "General method for the synthesis of [n.3.3]propellanes, n ≥ 3". Can. J. Chem. 56 (2): 189–192. doi:10.1139/v78-030. https://doi.org/10.1139%2Fv78-030
Weber, Robert W.; Cook, James M. (1978). "General method for the synthesis of [n.3.3]propellanes, n ≥ 3". Can. J. Chem. 56 (2): 189–192. doi:10.1139/v78-030. https://doi.org/10.1139%2Fv78-030
Weber, Robert W.; Cook, James M. (1978). "General method for the synthesis of [n.3.3]propellanes, n ≥ 3". Can. J. Chem. 56 (2): 189–192. doi:10.1139/v78-030. https://doi.org/10.1139%2Fv78-030
Yang, S.; Cook, James M. (1976). "Reactions of dicarbonyl compounds with dimethyl β-ketoglutarate: II. Simple synthesis of compounds of the [10.3.3]- and [6.3.3]-propellane series". J. Org. Chem. 41 (11): 1903–1907. doi:10.1021/jo00873a004. /wiki/Journal_of_Organic_Chemistry
Pincock, Richard E.; Torupka, Edward J. (1969). "Tetracyclo[3.3.1.13,7.01,3]decane. Highly reactive 1,3-dehydro derivative of adamantane". J. Am. Chem. Soc. 91 (16): 4593. doi:10.1021/ja01044a072. /wiki/Journal_of_the_American_Chemical_Society
Mlinaric-Majerski, K.; Majerski, Z. (1980). "2,4-Methano-2,4-dehydroadamantane. A [3.1.1]propellane". J. Am. Chem. Soc. 102 (4): 1418. doi:10.1021/ja00524a033. /wiki/Journal_of_the_American_Chemical_Society
Tian, X; Li, L; Hu, Y; Zhang, H; Liu, Y; Chen, H; Ding, G; Zou, Z (2013). "Dichrocephones A and B, two cytotoxic sesquiterpenoids with the unique [3.3.3] propellane nucleus skeleton from Dichrocephala benthamii". RSC Adv. 3 (19): 7880–7883. Bibcode:2013RSCAd...3.7880T. doi:10.1039/C3RA23364B. /wiki/RSC_Advances
Schmiedel, V. M.; Hong, Y. J.; Lentz, D; Tantillo, D. J.; Christmann, M (2018). "Synthesis and Structure Revision of Dichrocephones A and B". Angew. Chem. Int. Ed. 57 (9): 2419–2422. doi:10.1002/anie.201711766. PMID 29251825. /wiki/Angewandte_Chemie_International_Edition
Schneider, L. M.; Schmiedel, V. M.; Pecchioli, T; Lentz, T; Merten, C; Christmann, M (2017). "Asymmetric Synthesis of Carbocyclic Propellanes". Org. Lett. 19 (9): 2310–2313. doi:10.1021/acs.orglett.7b00836. PMID 28445060. /wiki/Organic_Letters