b | conjectured smallest Riesel k | covering set / algebraic factors | remaining k with no known primes (red indicates the k-values that are a multiple of b and k−1 is not prime) | number of remaining k with no known primes(excluding the red ks) | testing limit of n(excluding the red ks) | largest 5 primes found(excluding red ks) |
2 | 509203 | {3, 5, 7, 13, 17, 241} | 23669, 31859, 38473, 46663, 47338, 63718, 67117, 74699, 76946, 81041, 93326, 94676, 107347, 121889, 127436, 129007, 134234, 143047, 149398, 153892, 161669, 162082, 186652, 189352, 206231, 214694, 215443, 226153, 234343, 243778, 245561, 250027, 254872, 258014, 268468, 286094, 298796, 307784, 315929, 319511, 323338, 324011, 324164, 325123, 327671, 336839, 342847, 344759, 362609, 363343, 364903, 365159, 368411, 371893, 373304, 384539, 386801, 388556, 397027, 409753, 412462, 429388, 430886, 444637, 452306, 468686, 470173, 474491, 477583, 485557, 487556, 491122, 494743, 500054 | 42 | PrimeGrid is currently searching every remaining k at n > 14.5M | 97139×218397548−193839×215337656−1192971×214773498−1206039×213104952−12293×212918431−1 |
3 | 63064644938 | {5, 7, 13, 17, 19, 37, 41, 193, 757} | 3677878, 6878756, 10463066, 10789522, 11033634, 16874152, 18137648, 20636268, 21368582, 29140796, 31064666, 31389198, 32368566, 33100902, 38394682, 40175404, 40396658, 50622456, 51672206, 52072432, 54412944, 56244334, 59254534, 61908864, 62126002, 62402206, 64105746, 65337866, 71248336, 87422388, 93193998, 94167594, 94210372, 97105698, 97621124, 99302706, 103101766, 103528408, 107735486, 111036578, 115125596, 115184046, ... | 100714 | k = 3677878 at n = 5M, 4M < k ≤ 2.147G at n = 1.07M, 2.147G < k ≤ 6G at n = 500K, 6G < k ≤ 10G at n = 250K, 10G < k ≤ 63G at n = 100K, , k > 63G at n = 655K | 676373272×31072675−11068687512×31067484−11483575692×31067339−1780548926×31064065−11776322388×31053069−1 |
4 | 9 | 9×4n − 1 = (3×2n − 1) × (3×2n + 1) | none (proven) | 0 | − | 8×41−16×41−15×41−13×41−12×41−1 |
5 | 346802 | {3, 7, 13, 31, 601} | 4906, 23906, 24530, 26222, 35248, 68132, 71146, 76354, 81134, 92936, 102952, 109238, 109862, 119530, 122650, 127174, 131110, 131848, 134266, 143632, 145462, 145484, 146756, 147844, 151042, 152428, 154844, 159388, 164852, 170386, 170908, 176240, 179080, 182398, 187916, 189766, 190334, 195872, 201778, 204394, 206894, 231674, 239062, 239342, 246238, 248546, 259072, 264610, 265702, 267298, 271162, 285598, 285728, 298442, 304004, 313126, 318278, 325922, 335414, 338866, 340660 | 54 | PrimeGrid is currently searching every remaining k at n > 4.8M | 3622×57558139-1 136804×54777253-152922×54399812-1177742×54386703-1213988×54138363-1 |
6 | 84687 | {7, 13, 31, 37, 97} | 1597, 9582, 57492 | 1 | 5M | 36772×61723287−143994×6569498−177743×6560745−151017×6528803−157023×6483561−1 |
7 | 408034255082 | {5, 13, 19, 43, 73, 181, 193, 1201} | 315768, 1356018, 2210376, 2494112, 2631672, 3423408, 4322834, 4326672, 4363418, 4382984, 4870566, 4990788, 5529368, 6279074, 6463028, 6544614, 7446728, 7553594, 8057622, 8354966, 8389476, 8640204, 8733908, 9492126, 9829784, 10096364, 10098716, 10243424, 10289166, 10394778, 10494794, 10965842, 11250728, 11335962, 11372214, 11522846, 11684954, 11943810, 11952888, 11983634, 12017634, 12065672, 12186164, 12269808, 12291728, 12801926, 13190732, 13264728, 13321148, 13635266, 13976426, ... | 16399 ks ≤ 1G | k ≤ 2M at n = 1M, 2M < k ≤ 10M at n = 500K, 10M < k ≤ 110M at n = 150K, 110M < k ≤ 300M at n = 100K, 300M < k ≤ 1G at n = 25K | 1620198×7684923−17030248×7483691−17320606×7464761−15646066×7460533−19012942×7425310−1 |
8 | 14 | {3, 5, 13} | none (proven) | 0 | − | 11×818−15×84−112×83−17×83−12×82−1 |
9 | 4 | 4×9n − 1 = (2×3n − 1) × (2×3n + 1) | none (proven) | 0 | − | 2×91−1 |
10 | 10176 | {7, 11, 13, 37} | 4421 | 1 | 1.72M | 7019×10881309−18579×10373260−16665×1060248−11935×1051836−11803×1045882−1 |
11 | 862 | {3, 7, 19, 37} | none (proven) | 0 | − | 62×1126202−1308×11444−1172×11187−1284×11186−1518×1178−1 |
12 | 25 | {13} for odd n, 25×12n − 1 = (5×12n/2 − 1) × (5×12n/2 + 1) for even n | none (proven) | 0 | − | 24×124−118×122−117×122−113×122−110×122−1 |
13 | 302 | {5, 7, 17} | none (proven) | 0 | − | 288×13109217−1146×1330−192×1323−1102×1320−1300×1310−1 |
14 | 4 | {3, 5} | none (proven) | 0 | − | 2×144−13×141−1 |
15 | 36370321851498 | {13, 17, 113, 211, 241, 1489, 3877} | 381714, 4502952, 5237186, 5725710, 7256276, 8524154, 11118550, 11176190, 12232180, 15691976, 16338798, 16695396, 18267324, 18709072, 19615792, ... | 14 ks ≤ 20M | k ≤ 10M at n = 1M, 10M < k ≤ 20M at n = 250K | 4242104×15728840−19756404×15527590−19105446×15496499−15854146×15428616−19535278×15375675−1 |
16 | 9 | 9×16n − 1 = (3×4n − 1) × (3×4n + 1) | none (proven) | 0 | − | 8×161−15×161−13×161−12×161−1 |
17 | 86 | {3, 5, 29} | none (proven) | 0 | − | 44×176488−136×17243−110×17117−126×17110−158×1735−1 |
18 | 246 | {5, 13, 19} | none (proven) | 0 | − | 151×18418−178×18172−150×18110−179×1863−1237×1844−1 |
19 | 144 | {5} for odd n, 144×19n − 1 = (12×19n/2 − 1) × (12×19n/2 + 1) for even n | none (proven) | 0 | − | 134×19202−1104×1918−138×1911−1128×1910−1108×196−1 |
20 | 8 | {3, 7} | none (proven) | 0 | − | 2×2010−16×202−15×202−17×201−13×201−1 |
21 | 560 | {11, 13, 17} | none (proven) | 0 | − | 64×212867−1494×21978−1154×21103−184×2188−1142×2148−1 |
22 | 4461 | {5, 23, 97} | 3656 | 1 | 2M | 3104×22161188−14001×2236614−12853×2227975−11013×2226067−14118×2212347−1 |
23 | 476 | {3, 5, 53} | 404 | 1 | 1.35M | 194×23211140−1134×2327932−1394×2320169−1314×2317268−1464×237548−1 |
24 | 4 | {5} for odd n, 4×24n − 1 = (2×24n/2 − 1) × (2×24n/2 + 1) for even n | none (proven) | 0 | − | 3×241−12×241−1 |
25 | 36 | 36×25n − 1 = (6×5n − 1) × (6×5n + 1) | none (proven) | 0 | − | 32×254−130×252−126×252−112×252−12×252−1 |
26 | 149 | {3, 7, 31, 37} | none (proven) | 0 | − | 115×26520277−132×269812−173×26537−180×26382−1128×26300−1 |
27 | 8 | 8×27n − 1 = (2×3n − 1) × (4×9n + 2×3n + 1) | none (proven) | 0 | − | 6×272−14×271−12×271−1 |
28 | 144 | {29} for odd n, 144×28n − 1 = (12×28n/2 − 1) × (12×28n/2 + 1) for even n | none (proven) | 0 | − | 107×2874−1122×2871−1101×2853−114×2847−190×2836−1 |
29 | 4 | {3, 5} | none (proven) | 0 | − | 2×29136−1 |
30 | 1369 | {7, 13, 19} for odd n, 1369×30n − 1 = (37×30n/2 − 1) × (37×30n/2 + 1) for even n | 659, 1024 | 2 | 500K | 239×30337990−1249×30199355−1225×30158755−1774×30148344−125×3034205−1 |
31 | 134718 | {7, 13, 19, 37, 331} | 55758 | 1 | 3M | 6962×312863120−1126072×31374323−143902×31251859−155940×31197599−1101022×31133208−1 |
32 | 10 | {3, 11} | none (proven) | 0 | − | 3×3211−12×326−19×323−18×322−15×322−1 |