Arge et al. writes that the priority tree always answers window-queries with O ( ( N B ) 1 − 1 d + T B ) {\displaystyle O\left(\left({\frac {N}{B}}\right)^{1-{\frac {1}{d}}}+{\frac {T}{B}}\right)} I/Os, where N is the number of d-dimensional (hyper-) rectangles stored in the R-tree, B is the disk block size, and T is the output size.
In the case of d = 2 {\displaystyle d=2} the rectangle is represented by ( ( x m i n , y m i n ) , ( x m a x , y m a x ) ) {\displaystyle \,((x_{min},y_{min}),(x_{max},y_{max}))} and the MBR thus four corners ( x m i n , y m i n , x m a x , y m a x ) {\displaystyle \,(x_{min},y_{min},x_{max},y_{max})} .
L. Arge; M. de Berg; H. J. Haverkort; K. Yi (2004). "The Priority R-Tree: A Practically Efficient and Worst-Case Optimal R-Tree" (PDF). SIGMOD. Retrieved 12 October 2011. /wiki/Lars_Arge ↩