Cloud-based quantum computing is used across education, research, and software development, offering remote access to quantum systems without the need for on-site infrastructure.
Quantum cloud platforms have become valuable tools in education, allowing students and instructors to engage with real quantum processors through user-friendly interfaces. Educators use these platforms to teach foundational concepts in quantum mechanics and quantum computing, as well as to demonstrate and implement quantum algorithms in a classroom or laboratory setting.56
Cloud-based access to quantum hardware has enabled researchers to conduct experiments in quantum information, test quantum algorithms, and compare quantum hardware platforms. Experiments such as testing Bell's theorem or evaluating quantum teleportation protocols have been performed on publicly available quantum processors.789
Developers use cloud-based platforms to prototype quantum software applications across fields such as optimization, machine learning, and chemistry. These platforms offer SDKs and APIs that integrate classical and quantum workflows, enabling experimentation with quantum algorithms in real-world or simulated environments.
Quantum cloud tools have also been used to create educational games and interactive applications aimed at increasing public understanding of quantum concepts. These efforts help bridge the gap between theoretical content and intuitive learning.10
"IBM Q Experience". quantumexperience.ng.bluemix.net. Archived from the original on 2019-06-14. Retrieved 2019-05-08. https://web.archive.org/web/20190614131004/https://quantumexperience.ng.bluemix.net/qx/editor ↩
"Rigetti Computing Software Demo: Forest". YouTube. 31 January 2017. Retrieved 2021-02-03. https://www.youtube.com/watch?v=IpoASc18P5Q ↩
Nguyen, H. T.; Krishnan, P.; Krishnaswamy, D.; Usman, M.; Buyya, R. (April 2024). "Quantum Cloud Computing: A Review, Open Problems, and Future Directions". arXiv:2404.11420. {{cite arXiv}}: |archive-url= requires |archive-date= (help); Unknown parameter |archive-url= ignored (help) /wiki/ArXiv_(identifier) ↩
Chen, Xi; Cheng, Bin; Li, Zhaokai; Nie, Xinfang; Yu, Nengkun; Yung, Man-Hong; Peng, Xinhua (2018). "Experimental Cryptographic Verification for Near-Term Quantum Cloud Computing". arXiv:1808.07375 [quant-ph]. /wiki/ArXiv_(identifier) ↩
"Undergraduates on a cloud using IBM Quantum Experience". 9 June 2016. https://uwaterloo.ca/institute-for-quantum-computing/news/undergraduates-cloud-using-ibm-quantum-experience ↩
Fedortchenko, Serguei (8 July 2016). "A quantum teleportation experiment for undergraduate students". arXiv:1607.02398 [quant-ph]. /wiki/ArXiv_(identifier) ↩
Alsina, Daniel; Latorre, José Ignacio (11 July 2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". Physical Review A. 94 (1): 012314. arXiv:1605.04220. doi:10.1103/PhysRevA.94.012314. S2CID 119189277. /wiki/ArXiv_(identifier) ↩
Devitt, Simon J. (29 September 2016). "Performing quantum computing experiments in the cloud". Physical Review A. 94 (3): 032329. arXiv:1605.05709. doi:10.1103/PhysRevA.94.032329. S2CID 119217150. /wiki/Simon_Devitt ↩
Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A.; Wright, Kenneth; Monroe, Christopher (28 March 2017). "Experimental comparison of two quantum computing architectures". Proceedings of the National Academy of Sciences. 114 (13): 3305–3310. arXiv:1702.01852. doi:10.1073/pnas.1618020114. PMC 5380037. PMID 28325879. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380037 ↩
Wootton, James (12 March 2017). "Why we need to make quantum games". Medium. https://medium.com/@decodoku/why-we-need-to-make-quantum-games-6f8c7bc4ace7 ↩
qbraid.com ↩
qbraid.com/pricing ↩
Heurtel, Nicolas; Fyrillas, Andreas; de Gliniasty, Grégoire; Le Bihan, Raphaël; Malherbe, Sébastien; Pailhas, Marceau; Bertasi, Eric; Bourdoncle, Boris; Emeriau, Pierre-Emmanuel; Mezher, Rawad; Music, Luka; Belabas, Nadia; Valiron, Benoît; Senellart, Pascale; Mansfield, Shane; Senellart, Jean (February 21, 2023). "Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing". Quantum. 7: 931. arXiv:2204.00602. Bibcode:2023Quant...7..931H. doi:10.22331/q-2023-02-21-931. S2CID 247922568. https://quantum-journal.org/papers/q-2023-02-21-931/ ↩
Choi, Charles Q. (9 September 2020). "First Photonic Quantum Computer on the Cloud". IEEE Spectrum. https://spectrum.ieee.org/photonic-quantum ↩
Smith, Robert S.; Curtis, Michael J.; Zeng, William J. (2016-08-10). "A Practical Quantum Instruction Set Architecture". arXiv:1608.03355 [quant-ph]. /wiki/ArXiv_(identifier) ↩
"IBM Q Homepage". 2025-06-01. {{cite web}}: Missing or empty |url= (help) /wiki/Template:Cite_web ↩
"IBM Quantum Platform". 2 April 2009. https://quantum.ibm.com/ ↩
"IBM Q Experience tutorial". https://quantumexperience.ng.bluemix.net/qx/tutorial ↩
"Quantum in the Cloud". bristol.ac.uk. Retrieved 2017-07-20. http://www.bristol.ac.uk/physics/research/quantum/engagement/qcloud/ ↩
"Quantum Computing Playground". quantumplayground.net. Retrieved 2017-07-20. http://www.quantumplayground.net/#/home ↩
"QuTech Announces Quantum Inspire, Europe's First Public Quantum Computing Platform". quantumcomputingreport.com. 22 April 2020. Retrieved 2020-05-05. https://quantumcomputingreport.com/news/qutech-announces-quantum-inspire-europes-first-public-quantum-computing-platform/ ↩
Lardinois, Frederic (25 September 2019). "QC Ware Forge will give developers access to quantum hardware and simulators across vendors". TechCrunch. Retrieved 29 October 2019. https://techcrunch.com/2019/09/25/qc-ware-forge-will-give-developers-access-to-quantum-hardware-and-simulators-across-vendors/ ↩