Let A {\displaystyle A} be a commutative ring and M {\displaystyle M} an A-module. There are different equivalent definitions of a connection on M {\displaystyle M} .2
If k → A {\displaystyle k\to A} is a ring homomorphism, a k {\displaystyle k} -linear connection is a k {\displaystyle k} -linear morphism
which satisfies the identity
A connection extends, for all p ≥ 0 {\displaystyle p\geq 0} to a unique map
satisfying ∇ ( ω ⊗ f ) = d ω ⊗ f + ( − 1 ) p ω ∧ ∇ f {\displaystyle \nabla (\omega \otimes f)=d\omega \otimes f+(-1)^{p}\omega \wedge \nabla f} . A connection is said to be integrable if ∇ ∘ ∇ = 0 {\displaystyle \nabla \circ \nabla =0} , or equivalently, if the curvature ∇ 2 : M → Ω A / k 2 ⊗ M {\displaystyle \nabla ^{2}:M\to \Omega _{A/k}^{2}\otimes M} vanishes.
Let D ( A ) {\displaystyle D(A)} be the module of derivations of a ring A {\displaystyle A} . A connection on an A-module M {\displaystyle M} is defined as an A-module morphism
such that the first order differential operators ∇ u {\displaystyle \nabla _{u}} on M {\displaystyle M} obey the Leibniz rule
Connections on a module over a commutative ring always exist.
The curvature of the connection ∇ {\displaystyle \nabla } is defined as the zero-order differential operator
on the module M {\displaystyle M} for all u , u ′ ∈ D ( A ) {\displaystyle u,u'\in D(A)} .
If E → X {\displaystyle E\to X} is a vector bundle, there is one-to-one correspondence between linear connections Γ {\displaystyle \Gamma } on E → X {\displaystyle E\to X} and the connections ∇ {\displaystyle \nabla } on the C ∞ ( X ) {\displaystyle C^{\infty }(X)} -module of sections of E → X {\displaystyle E\to X} . Strictly speaking, ∇ {\displaystyle \nabla } corresponds to the covariant differential of a connection on E → X {\displaystyle E\to X} .
The notion of a connection on modules over commutative rings is straightforwardly extended to modules over a graded commutative algebra.3 This is the case of superconnections in supergeometry of graded manifolds and supervector bundles. Superconnections always exist.
If A {\displaystyle A} is a noncommutative ring, connections on left and right A-modules are defined similarly to those on modules over commutative rings.4 However these connections need not exist.
In contrast with connections on left and right modules, there is a problem how to define a connection on an R-S-bimodule over noncommutative rings R and S. There are different definitions of such a connection.5 Let us mention one of them. A connection on an R-S-bimodule P {\displaystyle P} is defined as a bimodule morphism
which obeys the Leibniz rule
(Koszul 1950) - Koszul, Jean-Louis (1950). "Homologie et cohomologie des algèbres de Lie" (PDF). Bulletin de la Société Mathématique de France. 78: 65–127. doi:10.24033/bsmf.1410. http://www.numdam.org/item/10.24033/bsmf.1410.pdf ↩
(Koszul 1950),(Mangiarotti & Sardanashvily 2000) - Koszul, Jean-Louis (1950). "Homologie et cohomologie des algèbres de Lie" (PDF). Bulletin de la Société Mathématique de France. 78: 65–127. doi:10.24033/bsmf.1410. http://www.numdam.org/item/10.24033/bsmf.1410.pdf ↩
(Bartocci, Bruzzo & Hernández-Ruipérez 1991), (Mangiarotti & Sardanashvily 2000) - Bartocci, Claudio; Bruzzo, Ugo; Hernández-Ruipérez, Daniel (1991). The Geometry of Supermanifolds. doi:10.1007/978-94-011-3504-7. ISBN 978-94-010-5550-5. https://doi.org/10.1007%2F978-94-011-3504-7 ↩
(Landi 1997) - Landi, Giovanni (1997). An Introduction to Noncommutative Spaces and their Geometries. Lecture Notes in Physics. Vol. 51. arXiv:hep-th/9701078. doi:10.1007/3-540-14949-X. ISBN 978-3-540-63509-3. S2CID 14986502. https://arxiv.org/abs/hep-th/9701078 ↩
(Dubois-Violette & Michor 1996),(Landi 1997) - Dubois-Violette, Michel; Michor, Peter W. (1996). "Connections on central bimodules in noncommutative differential geometry". Journal of Geometry and Physics. 20 (2–3): 218–232. arXiv:q-alg/9503020. doi:10.1016/0393-0440(95)00057-7. S2CID 15994413. https://arxiv.org/abs/q-alg/9503020 ↩