[The paper of Eilenberg and Mac Lane (1942)] introduced the very abstract idea of a 'category' — a subject then called 'general abstract nonsense'!— Saunders Mac Lane (1997)
[The paper of Eilenberg and Mac Lane (1942)] introduced the very abstract idea of a 'category' — a subject then called 'general abstract nonsense'!
[Grothendieck] raised algebraic geometry to a new level of abstraction...if certain mathematicians could console themselves for a time with the hope that all these complicated structures were 'abstract nonsense'...the later papers of Grothendieck and others showed that classical problems...which had resisted efforts of several generations of talented mathematicians, could be solved in terms of...complicated concepts.— Michael Monastyrsky (2001)
[Grothendieck] raised algebraic geometry to a new level of abstraction...if certain mathematicians could console themselves for a time with the hope that all these complicated structures were 'abstract nonsense'...the later papers of Grothendieck and others showed that classical problems...which had resisted efforts of several generations of talented mathematicians, could be solved in terms of...complicated concepts.
There are two canonical proofs that are always used to show non-mathematicians what a mathematical proof is like: —The proof that there are infinitely many prime numbers.—The proof of the irrationality of the square root of two.— Freek Wiedijk (2006, p.2)
There are two canonical proofs that are always used to show non-mathematicians what a mathematical proof is like:
The beauty of a mathematical theory is independent of the aesthetic qualities...of the theory's rigorous expositions. Some beautiful theories may never be given a presentation which matches their beauty....Instances can also be found of mediocre theories of questionable beauty which are given brilliant, exciting expositions....[Category theory] is rich in beautiful and insightful definitions and poor in elegant proofs....[The theorems] remain clumsy and dull....[Expositions of projective geometry] vied for one another in elegance of presentation and in cleverness of proof....In retrospect, one wonders what all the fuss was about.Mathematicians may say that a theorem is beautiful when they really mean to say that it is enlightening. We acknowledge a theorem's beauty when we see how the theorem 'fits' in its place....We say that a proof is beautiful when such a proof finally gives away the secret of the theorem....— Gian-Carlo Rota (1977, pp.173–174, pp.181–182)
The beauty of a mathematical theory is independent of the aesthetic qualities...of the theory's rigorous expositions. Some beautiful theories may never be given a presentation which matches their beauty....Instances can also be found of mediocre theories of questionable beauty which are given brilliant, exciting expositions....[Category theory] is rich in beautiful and insightful definitions and poor in elegant proofs....[The theorems] remain clumsy and dull....[Expositions of projective geometry] vied for one another in elegance of presentation and in cleverness of proof....In retrospect, one wonders what all the fuss was about.Mathematicians may say that a theorem is beautiful when they really mean to say that it is enlightening. We acknowledge a theorem's beauty when we see how the theorem 'fits' in its place....We say that a proof is beautiful when such a proof finally gives away the secret of the theorem....
Many of the results mentioned in this paper should be considered "folklore" in that they merely formally state ideas that are well-known to researchers in the area, but may not be obvious to beginners and to the best of my knowledge do not appear elsewhere in print.— Russell Impagliazzo (1995)
Many of the results mentioned in this paper should be considered "folklore" in that they merely formally state ideas that are well-known to researchers in the area, but may not be obvious to beginners and to the best of my knowledge do not appear elsewhere in print.
Since half a century we have seen arise a crowd of bizarre functions which seem to try to resemble as little as possible the honest functions which serve some purpose....Nay more, from the logical point of view, it is these strange functions which are the most general....to-day they are invented expressly to put at fault the reasonings of our fathers....— Henri Poincaré (1913)
Since half a century we have seen arise a crowd of bizarre functions which seem to try to resemble as little as possible the honest functions which serve some purpose....Nay more, from the logical point of view, it is these strange functions which are the most general....to-day they are invented expressly to put at fault the reasonings of our fathers....
[The Dirichlet function] took on an enormous importance...as giving an incentive for the creation of new types of function whose properties departed completely from what intuitively seemed admissible. A celebrated example of such a so-called 'pathological' function...is the one provided by Weierstrass....This function is continuous but not differentiable.— J. Sousa Pinto (2004)
[The Dirichlet function] took on an enormous importance...as giving an incentive for the creation of new types of function whose properties departed completely from what intuitively seemed admissible. A celebrated example of such a so-called 'pathological' function...is the one provided by Weierstrass....This function is continuous but not differentiable.
Although ultimately every mathematical argument must meet a high standard of precision, mathematicians use descriptive but informal statements to discuss recurring themes or concepts with unwieldy formal statements. Note that many of the terms are completely rigorous in context.
Norbert A'Campo of the University of Basel once asked Grothendieck about something related to the Platonic solids. Grothendieck advised caution. The Platonic solids are so beautiful and so exceptional, he said, that one cannot assume such exceptional beauty will hold in more general situations.— Allyn Jackson (2004, p.1197)
Norbert A'Campo of the University of Basel once asked Grothendieck about something related to the Platonic solids. Grothendieck advised caution. The Platonic solids are so beautiful and so exceptional, he said, that one cannot assume such exceptional beauty will hold in more general situations.
The formal language of proof draws repeatedly from a small pool of ideas, many of which are invoked through various lexical shorthands in practice.
Let V be a finite-dimensional vector space over k....Let (ei)1≤ i ≤ n be a basis for V....There is an isomorphism of the polynomial algebra k[Tij]1≤ i, j ≤ n onto the algebra Symk(V ⊗ V*)....It extends to an isomorphism of k[GLn] to the localized algebra Symk(V ⊗ V*)D, where D = det(ei ⊗ ej*)....We write k[GL(V)] for this last algebra. By transport of structure, we obtain a linear algebraic group GL(V) isomorphic to GLn.— Igor Shafarevich (1991, p.12)
Let V be a finite-dimensional vector space over k....Let (ei)1≤ i ≤ n be a basis for V....There is an isomorphism of the polynomial algebra k[Tij]1≤ i, j ≤ n onto the algebra Symk(V ⊗ V*)....It extends to an isomorphism of k[GLn] to the localized algebra Symk(V ⊗ V*)D, where D = det(ei ⊗ ej*)....We write k[GL(V)] for this last algebra. By transport of structure, we obtain a linear algebraic group GL(V) isomorphic to GLn.
Mathematicians have several phrases to describe proofs or proof techniques. These are often used as hints for filling in tedious details.
This section features terms used across different areas in mathematics, or terms that do not typically appear in more specialized glossaries. For the terms used only in some specific areas of mathematics, see glossaries in Category:Glossaries of mathematics.
Main article: List of theorems called fundamental
Goldfeld, Dorian. "The Elementary Proof of the Prime Number Theorem: An Historical Perspective" (PDF). Columbia University. http://www.math.columbia.edu/~goldfeld/ErdosSelbergDispute.pdf ↩
Boyd, Stephen (2004). Convex Optimization. Cambridge University Press. ISBN 978-0521833783. 978-0521833783 ↩
Roe, John (1993), Elementary Geometry, Oxford science publications, p. 119, ISBN 978-0-19-853456-3 978-0-19-853456-3 ↩
Numerous examples can be found in (Mac Lane 1998), for example on p. 100. - Mac Lane, Saunders (1998), Categories for the Working Mathematician, Springer ↩