Annotation Practices are highlighting a phrase or sentence and including a comment, circling a word that needs defining, posing a question when something is not fully understood and writing a short summary of a key section. It also invites students to "(re)construct a history through material engagement and exciting DIY (Do-It-Yourself) annotation practices." Annotation practices that are available today offer a remarkable set of tools for students to begin to work, and in a more collaborative, connected way than has been previously possible.
Text and Film Annotation is a technique that involves using comments, text within a film. Analyzing videos is an undertaking that is never entirely free of preconceived notions, and the first step for researchers is to find their bearings within the field of possible research approaches and thus reflect on their own basic assumptions. Annotations can take part within the video, and can be used when the data video is recorded. It is being used as a tool in text and film to write one's thoughts and emotion into the markings. In any number of steps of analysis, it can also be supplemented with more annotations. Anthropologists Clifford Geertz calls it a "thick description." This can give a sense of how useful annotation is, especially by adding a description of how it can be implemented in film.
Marginalia refers to writing or decoration in the margins of a manuscript. Medieval marginalia is so well known that amusing or disconcerting instances of it are fodder for viral aggregators such as Buzzfeed and Brainpickings, and the fascination with other readers’ reading is manifest in sites such as Melville's Marginalia Online or Harvard's online exhibit of marginalia from six personal libraries. It can also be a part of other websites such as Pinterest, or even meme generators and GIF tools.
Students use Annotation not only for academic purposes, but interpreting their own thoughts, feelings, and emotions. Sites such as Scalar and Omeka are sites that students use. There are multiple genres with Annotation such as math, film, linguists, and literary theory which students find it most helpful to use. Most students reported the annotation process as helpful for improving overall writing ability, grammar, and academic vocabulary knowledge.
From a cognitive perspective, annotation has an important role in learning and instruction. As part of guided noticing it involves highlighting, naming or labelling and commenting aspects of visual representations to help focus learners' attention on specific visual aspects. In other words, it means the assignment of typological representations (culturally meaningful categories), to topological representations (e.g. images). This is especially important when experts, such as medical doctors, interpret visualizations in detail and explain their interpretations to others, for example by means of digital technology. Here, annotation can be a way to establish common ground between interactants with different levels of knowledge. The value of annotation has been empirically confirmed, for example, in a study which shows that in computer-based teleconsultations the integration of image annotation and speech leads to significantly improved knowledge exchange compared with the use of images and speech without annotation.
There are several semantic labelling types which utilises machine learning techniques. These techniques can be categorised following the work of Flach as follows: geometric (using lines and planes, such as Support-vector machine, Linear regression), probabilistic (e.g., Conditional random field), logical (e.g., Decision tree learning), and Non-ML techniques (e.g., balancing coverage and specificity). Note that the geometric, probabilistic, and logical machine learning models are not mutually exclusive.
Syed et al. built Wikitology, which is "a hybrid knowledge base of structured and unstructured information extracted from Wikipedia augmented by RDF data from DBpedia and other Linked Data resources." For the Wikitology index, they use PageRank for Entity linking, which is one of the tasks often used in semantic labelling. Since they were not able to query Google for all Wikipedia articles to get the PageRank, they used Decision tree to approximate it.
Alobaid and Corcho presented an approach to annotate entity columns. The technique starts by annotating the cells in the entity column with the entities from the reference knowledge graph (e.g., DBpedia). The classes are then gathered and each one of them is scored based on several formulas they presented taking into account the frequency of each class and their depth according to the subClass hierarchy.
Here are some of the common semantic labelling tasks presented in the literature:
This is the most common task in semantic labelling. Given a text of a cell and a data source, the approach predicts the entity and link it to the one identified in the given data source. For example, if the input to the approach were the text "Richard Feynman" and a URL to the SPARQL endpoint of DBpedia, the approach would return "http://dbpedia.org/resource/Richard_Feynman", which is the entity from DBpedia. Some approaches use exact match. while others use similarity metrics such as Cosine similarity
The subject column of a table is the column that contain the main subjects/entities in the table. Some approaches expects the subject column as an input while others predict the subject column such as TableMiner+.
Columns types are divided differently by different approaches. Some divide them into strings/text and numbers while others divide them further (e.g., Number Typology, Date, coordinates).
T2D is the most common gold standard for semantic labelling. Two versions exists of T2D: T2Dv1 (sometimes are referred to T2D as well) and T2Dv2. Another known benchmarks are published with the SemTab Challenge.
One purpose of annotation is to transform the data into a form suitable for computer-aided analysis. Prior to annotation, an annotation scheme is defined that typically consists of tags. During tagging, transcriptionists manually add tags into transcripts where required linguistical features are identified in an annotation editor. The annotation scheme ensures that the tags are added consistently across the data set and allows for verification of previously tagged data. Aside from tags, more complex forms of linguistic annotation include the annotation of phrases and relations, e.g., in treebanks. Many different forms of linguistic annotation have been developed, as well as different formats and tools for creating and managing linguistic annotations, as described, for example, in the Linguistic Annotation Wiki.
"Definition of Data Annotation". macgence.com/. 17 August 2023. https://macgence.com/a-brief-guide-about-the-data-annotation/
"Types of Data Annotation". maanz-ai.com/. 30 March 2024. https://www.maanz-ai.com/annotation/
Crosthwaite, Peter; Sanhueza, Alicia Gazmuri; Schweinberger, Martin (September 2021). "Training disciplinary genre awareness through blended learning: An exploration into EAP students' perceptions of online annotation of genres across disciplines". Journal of English for Academic Purposes. 53: 101021. doi:10.1016/j.jeap.2021.101021. S2CID 236238505. https://linkinghub.elsevier.com/retrieve/pii/S1475158521000655
Jocius, Robin (March 2018). "Becoming Entangled: An Analysis of 5th Grade Students Collaborative Multimodal Composing Practices". Computers and Composition. 47: 14–30. doi:10.1016/j.compcom.2017.12.008. ISSN 8755-4615. https://dx.doi.org/10.1016/j.compcom.2017.12.008
Dougherty, Jack; O'Donnell, Tennyson, eds. (2015-04-21). Web Writing. University of Michigan Press. doi:10.2307/j.ctv65sxgk. ISBN 978-0-472-90012-1. 978-0-472-90012-1
Lösel, Gunter; Zimper, Martin, eds. (2021-05-26). Filming, Researching, Annotating: Research Video Handbook. doi:10.1515/9783035623079. ISBN 9783035623079. S2CID 238919442. 9783035623079
Crosthwaite, Peter; Sanhueza, Alicia Gazmuri; Schweinberger, Martin (September 2021). "Training disciplinary genre awareness through blended learning: An exploration into EAP students' perceptions of online annotation of genres across disciplines". Journal of English for Academic Purposes. 53: 101021. doi:10.1016/j.jeap.2021.101021. S2CID 236238505. https://linkinghub.elsevier.com/retrieve/pii/S1475158521000655
Lösel, Gunter; Zimper, Martin, eds. (2021-05-26). Filming, Researching, Annotating: Research Video Handbook. doi:10.1515/9783035623079. ISBN 9783035623079. S2CID 238919442. 9783035623079
Dougherty, Jack; O'Donnell, Tennyson, eds. (2015-04-21). Web Writing. University of Michigan Press. doi:10.2307/j.ctv65sxgk. ISBN 978-0-472-90012-1. 978-0-472-90012-1
Greetham, David C. (28 October 2015) [1992]. Textual Scholarship: An Introduction. Garland Reference Library of the Humanities. Vol. 1417. Routledge. ISBN 978-1-136-75579-8. 978-1-136-75579-8
Wallen, Erik; Plass, Jan L.; Brünken, Roland (September 2005). "The function of annotations in the comprehension of scientific texts: Cognitive load effects and the impact of verbal ability". Educational Technology Research and Development. 53 (3): 59–71. doi:10.1007/BF02504798. ISSN 1042-1629. S2CID 17846801. http://link.springer.com/10.1007/BF02504798
Crosthwaite, Peter; Sanhueza, Alicia Gazmuri; Schweinberger, Martin (September 2021). "Training disciplinary genre awareness through blended learning: An exploration into EAP students' perceptions of online annotation of genres across disciplines". Journal of English for Academic Purposes. 53: 101021. doi:10.1016/j.jeap.2021.101021. S2CID 236238505. https://linkinghub.elsevier.com/retrieve/pii/S1475158521000655
Moritz Schubotz; Philipp Scharpf; et al. (12 September 2018). "Introducing MathQA: a Math-Aware question answering system". Information Discovery and Delivery. 46 (4). Emerald Publishing Limited: 214–224. arXiv:1907.01642. doi:10.1108/IDD-06-2018-0022. S2CID 49484035. /wiki/ArXiv_(identifier)
Scharpf, P.; Schubotz, M.; et al. (2018). Representing Mathematical Formulae in Content MathML using Wikidata. ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2018). https://openreview.net/pdf?id=BkZ1IIZu-H
"AnnoMathTeX Formula/Identifier Annotation Recommender System". http://annomathtex.wmflabs.org
Philipp Scharpf; Ian Mackerracher; et al. (17 September 2019). "AnnoMathTeX - a formula identifier annotation recommender system for STEM documents". Proceedings of the 13th ACM Conference on Recommender Systems (PDF). pp. 532–3. doi:10.1145/3298689.3347042. ISBN 9781450362436. S2CID 202639987. 9781450362436
Philipp Scharpf; Moritz Schubotz; Bela Gipp (14 April 2021). "Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation". Companion Proceedings of the Web Conference 2021 (PDF). pp. 602–9. arXiv:2104.05111. doi:10.1145/3442442.3452348. ISBN 9781450383134. S2CID 233210264. 9781450383134
Pea, R.D. (2006). "Video-as-Data and Digital Video Manipulation Techniques for Transforming Learning Sciences Research, Education, and Other Cultural Practices". The International Handbook of Virtual Learning Environments (PDF). Springer. pp. 1321–93. doi:10.1007/978-1-4020-3803-7_55. ISBN 978-1-4020-3803-7. 978-1-4020-3803-7
Coiera, E. (2014). "Communication spaces". J Am Med Inform Assoc. 21 (3): 414–422. doi:10.1136/amiajnl-2012-001520. PMC 3994845. PMID 24005797. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994845
Clark, Herbert H. (1996). Using Language. Cambridge University Press. ISBN 978-0-521-56745-9. 978-0-521-56745-9
Pimmer, C.; Mateescu, M.; Zahn, C.; Genewein, U. (2013). "Smartphones as multimodal communication devices to facilitate clinical knowledge processes — a randomized controlled trial". Journal of Medical Internet Research. 15 (11): e263. doi:10.2196/jmir.2758. PMC 3868983. PMID 24284080. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868983
"YouTube annotations will disappear for good in January". engadget. 2018-11-27. Retrieved 2019-01-19. https://www.theverge.com/2018/11/27/18114581/youtube-annotations-discontinued-january-2019
"Web Annotation Data Model". World Wide Web Consortium. 11 December 2014. Retrieved 25 August 2015. http://www.w3.org/TR/annotation-model/
Alobaid, Ahmad; Kacprzak, Emilia; Corcho, Oscar (January 1, 2021). "Typology-based semantic labeling of numeric tabular data". Semantic Web. 12 (1): 5–20. doi:10.3233/SW-200397. S2CID 224853014 – via content.iospress.com. https://content.iospress.com/articles/semantic-web/sw200397
Taheriyan, Mohsen; Knoblock, Craig A.; Szekely, Pedro; Ambite, José Luis (March 1, 2016). "Learning the semantics of structured data sources". Web Semantics: Science, Services and Agents on the World Wide Web. 37 (C): 152–169. arXiv:1601.04105. doi:10.1016/j.websem.2015.12.003. S2CID 7409058 – via March 2016. https://doi.org/10.1016/j.websem.2015.12.003
Alobaid, Ahmad; Corcho, Oscar (2018). "Fuzzy Semantic Labeling of Semi-structured Numerical Datasets". In Faron Zucker, Catherine; Ghidini, Chiara; Napoli, Amedeo; Toussaint, Yannick (eds.). Knowledge Engineering and Knowledge Management. Lecture Notes in Computer Science. Vol. 11313. Cham: Springer International Publishing. pp. 19–33. doi:10.1007/978-3-030-03667-6_2. ISBN 978-3-030-03667-6. 978-3-030-03667-6
Alobaid, Ahmad; Corcho, Oscar (2022-03-15). "Balancing coverage and specificity for semantic labelling of subject columns". Knowledge-Based Systems. 240: 108092. doi:10.1016/j.knosys.2021.108092. ISSN 0950-7051. S2CID 245971543. https://www.sciencedirect.com/science/article/pii/S095070512101159X
Hassanzadeh, O.; Ward, Michael J.; Rodriguez-Muro, Mariano; Srinivas, Kavitha (December 17, 2015). "Understanding a large corpus of web tables through matching with knowledge bases: an empirical study". S2CID 442374. https://www.semanticscholar.org/paper/Understanding-a-large-corpus-of-web-tables-through-Hassanzadeh-Ward/f3d7550fcdf9c284874c05931ced2ffbcb2accc0
Alobaid, Ahmad; Corcho, Oscar (2022-03-15). "Balancing coverage and specificity for semantic labelling of subject columns". Knowledge-Based Systems. 240: 108092. doi:10.1016/j.knosys.2021.108092. ISSN 0950-7051. S2CID 245971543. https://www.sciencedirect.com/science/article/pii/S095070512101159X
Alobaid, Ahmad; Corcho, Oscar (2022-03-15). "Balancing coverage and specificity for semantic labelling of subject columns". Knowledge-Based Systems. 240: 108092. doi:10.1016/j.knosys.2021.108092. ISSN 0950-7051. S2CID 245971543. https://www.sciencedirect.com/science/article/pii/S095070512101159X
Alobaid, Ahmad; Kacprzak, Emilia; Corcho, Oscar (January 1, 2021). "Typology-based semantic labeling of numeric tabular data". Semantic Web. 12 (1): 5–20. doi:10.3233/SW-200397. S2CID 224853014 – via content.iospress.com. https://content.iospress.com/articles/semantic-web/sw200397
Alobaid, Ahmad; Corcho, Oscar (2018). "Fuzzy Semantic Labeling of Semi-structured Numerical Datasets". In Faron Zucker, Catherine; Ghidini, Chiara; Napoli, Amedeo; Toussaint, Yannick (eds.). Knowledge Engineering and Knowledge Management. Lecture Notes in Computer Science. Vol. 11313. Cham: Springer International Publishing. pp. 19–33. doi:10.1007/978-3-030-03667-6_2. ISBN 978-3-030-03667-6. 978-3-030-03667-6
Neumaier, Sebastian; Umbrich, Jürgen; Parreira, Josiane Xavier; Polleres, Axel (2016). "Multi-level Semantic Labelling of Numerical Values". In Groth, Paul; Simperl, Elena; Gray, Alasdair; Sabou, Marta; Krötzsch, Markus; Lecue, Freddy; Flöck, Fabian; Gil, Yolanda (eds.). The Semantic Web – ISWC 2016. Lecture Notes in Computer Science. Vol. 9981. Cham: Springer International Publishing. pp. 428–445. doi:10.1007/978-3-319-46523-4_26. ISBN 978-3-319-46523-4. 978-3-319-46523-4
Zhang, Meihui; Chakrabarti, Kaushik (2013-06-22). "InfoGather+". Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. SIGMOD '13. New York, NY, USA: Association for Computing Machinery. pp. 145–156. doi:10.1145/2463676.2465276. ISBN 978-1-4503-2037-5. S2CID 15540847. 978-1-4503-2037-5
Ritze, Dominique; Lehmberg, Oliver; Bizer, Christian (July 13, 2015). "Matching HTML Tables to DBpedia". Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics. Association for Computing Machinery. pp. 1–6. doi:10.1145/2797115.2797118. ISBN 9781450332934. S2CID 207228254 – via ACM Digital Library. 9781450332934
Ritze, Dominique; Lehmberg, Oliver; Bizer, Christian (July 13, 2015). "Matching HTML Tables to DBpedia". Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics. Association for Computing Machinery. pp. 1–6. doi:10.1145/2797115.2797118. ISBN 9781450332934. S2CID 207228254 – via ACM Digital Library. 9781450332934
Zhang, Meihui; Chakrabarti, Kaushik (2013-06-22). "InfoGather+". Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. SIGMOD '13. New York, NY, USA: Association for Computing Machinery. pp. 145–156. doi:10.1145/2463676.2465276. ISBN 978-1-4503-2037-5. S2CID 15540847. 978-1-4503-2037-5
Flach, Peter (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge: Cambridge University Press. doi:10.1017/cbo9780511973000. ISBN 978-1-107-09639-4. 978-1-107-09639-4
Alobaid, Ahmad (c. 2020). Knowledge-Graph-Based Semantic Labeling of Tabular Data (phd thesis). E.T.S. de Ingenieros Informáticos (UPM). doi:10.20868/upm.thesis.64068. https://oa.upm.es/64068/
Alobaid, Ahmad; Corcho, Oscar (2022-03-15). "Balancing coverage and specificity for semantic labelling of subject columns". Knowledge-Based Systems. 240: 108092. doi:10.1016/j.knosys.2021.108092. ISSN 0950-7051. S2CID 245971543. https://www.sciencedirect.com/science/article/pii/S095070512101159X
Flach, Peter (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge: Cambridge University Press. doi:10.1017/cbo9780511973000. ISBN 978-1-107-09639-4. 978-1-107-09639-4
Pham, Minh; Alse, Suresh; Knoblock, Craig A.; Szekely, Pedro (2016). "Semantic Labeling: A Domain-Independent Approach". In Groth, Paul; Simperl, Elena; Gray, Alasdair; Sabou, Marta; Krötzsch, Markus; Lecue, Freddy; Flöck, Fabian; Gil, Yolanda (eds.). The Semantic Web – ISWC 2016. Lecture Notes in Computer Science. Vol. 9981. Cham: Springer International Publishing. pp. 446–462. doi:10.1007/978-3-319-46523-4_27. ISBN 978-3-319-46523-4. S2CID 37873758. 978-3-319-46523-4
Alobaid, Ahmad; Corcho, Oscar (2018). "Fuzzy Semantic Labeling of Semi-structured Numerical Datasets". In Faron Zucker, Catherine; Ghidini, Chiara; Napoli, Amedeo; Toussaint, Yannick (eds.). Knowledge Engineering and Knowledge Management. Lecture Notes in Computer Science. Vol. 11313. Cham: Springer International Publishing. pp. 19–33. doi:10.1007/978-3-030-03667-6_2. ISBN 978-3-030-03667-6. 978-3-030-03667-6
Fuzzy c-Means Library, Ontology Engineering Group (UPM), 2022-01-29, retrieved 2023-01-04 https://github.com/oeg-upm/fcm-cpp
fuzzy-c-means, Ontology Engineering Group (UPM), 2022-12-12, retrieved 2023-01-04 https://github.com/oeg-upm/fuzzy-c-means
Limaye, Girija; Sarawagi, Sunita; Chakrabarti, Soumen (2010-09-01). "Annotating and searching web tables using entities, types and relationships". Proceedings of the VLDB Endowment. 3 (1–2): 1338–1347. doi:10.14778/1920841.1921005. ISSN 2150-8097. S2CID 9262964. https://doi.org/10.14778/1920841.1921005
Venetis, Petros; Halevy, Alon; Madhavan, Jayant; Paşca, Marius; Shen, Warren; Wu, Fei; Miao, Gengxin; Wu, Chung (2011-06-01). "Recovering semantics of tables on the web". Proceedings of the VLDB Endowment. 4 (9): 528–538. doi:10.14778/2002938.2002939. ISSN 2150-8097. S2CID 11359711. https://doi.org/10.14778/2002938.2002939
Alobaid, Ahmad; Corcho, Oscar (March 2024). "Linear approximation of the quantile–quantile plot for semantic labelling of numeric columns in tabular data". Expert Systems with Applications. 238: 122152. doi:10.1016/j.eswa.2023.122152. https://linkinghub.elsevier.com/retrieve/pii/S0957417423026544
Syed, Zareen; Finin, Tim; Mulwad, Varish; Joshi, Anupam (2010-04-26). "Exploiting a Web of Semantic Data for Interpreting Tables". Proceedings of the Second Web Science Conference. https://ebiquity.umbc.edu/paper/html/id/474
Syed, Zareen; Finin, Tim; Mulwad, Varish; Joshi, Anupam (2010-04-26). "Exploiting a Web of Semantic Data for Interpreting Tables". Proceedings of the Second Web Science Conference. https://ebiquity.umbc.edu/paper/html/id/474
Syed, Zareen; Finin, Tim; Mulwad, Varish; Joshi, Anupam (2010-04-26). "Exploiting a Web of Semantic Data for Interpreting Tables". Proceedings of the Second Web Science Conference. https://ebiquity.umbc.edu/paper/html/id/474
Alobaid, Ahmad; Corcho, Oscar (2022-03-15). "Balancing coverage and specificity for semantic labelling of subject columns". Knowledge-Based Systems. 240: 108092. doi:10.1016/j.knosys.2021.108092. ISSN 0950-7051. S2CID 245971543. https://www.sciencedirect.com/science/article/pii/S095070512101159X
"OWL Web Ontology Language Reference". www.w3.org. Retrieved 2022-09-22. https://www.w3.org/TR/owl-ref/Overview.html
Alobaid, Ahmad; Corcho, Oscar (2022-03-15). "Balancing coverage and specificity for semantic labelling of subject columns". Knowledge-Based Systems. 240: 108092. doi:10.1016/j.knosys.2021.108092. ISSN 0950-7051. S2CID 245971543. https://www.sciencedirect.com/science/article/pii/S095070512101159X
Limaye, Girija; Sarawagi, Sunita; Chakrabarti, Soumen (2010-09-01). "Annotating and searching web tables using entities, types and relationships". Proceedings of the VLDB Endowment. 3 (1–2): 1338–1347. doi:10.14778/1920841.1921005. ISSN 2150-8097. S2CID 9262964. https://doi.org/10.14778/1920841.1921005
Alobaid, Ahmad; Kacprzak, Emilia; Corcho, Oscar (January 1, 2021). "Typology-based semantic labeling of numeric tabular data". Semantic Web. 12 (1): 5–20. doi:10.3233/SW-200397. S2CID 224853014 – via content.iospress.com. https://content.iospress.com/articles/semantic-web/sw200397
Alobaid, Ahmad (c. 2020). Knowledge-Graph-Based Semantic Labeling of Tabular Data (phd thesis). E.T.S. de Ingenieros Informáticos (UPM). doi:10.20868/upm.thesis.64068. https://oa.upm.es/64068/
Venetis, Petros; Halevy, Alon; Madhavan, Jayant; Paşca, Marius; Shen, Warren; Wu, Fei; Miao, Gengxin; Wu, Chung (2011-06-01). "Recovering semantics of tables on the web". Proceedings of the VLDB Endowment. 4 (9): 528–538. doi:10.14778/2002938.2002939. ISSN 2150-8097. S2CID 11359711. https://doi.org/10.14778/2002938.2002939
Ermilov, Ivan; Ngomo, Axel-Cyrille Ngonga (2016), "TAIPAN: Automatic Property Mapping for Tabular Data", Knowledge Engineering and Knowledge Management, Lecture Notes in Computer Science, vol. 10024, Cham: Springer International Publishing, pp. 163–179, doi:10.1007/978-3-319-49004-5_11, ISBN 978-3-319-49003-8, S2CID 37730677, retrieved 2022-09-22 978-3-319-49003-8
Zhang, Ziqi (2017-08-07). Hitzler, Pascal; Cruz, Isabel (eds.). "Effective and efficient Semantic Table Interpretation using TableMiner+". Semantic Web. 8 (6): 921–957. doi:10.3233/SW-160242. https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-160242
Alobaid, Ahmad; Corcho, Oscar (2022-03-15). "Balancing coverage and specificity for semantic labelling of subject columns". Knowledge-Based Systems. 240: 108092. doi:10.1016/j.knosys.2021.108092. ISSN 0950-7051. S2CID 245971543. https://www.sciencedirect.com/science/article/pii/S095070512101159X
Zhang, Ziqi (2017-08-07). Hitzler, Pascal; Cruz, Isabel (eds.). "Effective and efficient Semantic Table Interpretation using TableMiner+". Semantic Web. 8 (6): 921–957. doi:10.3233/SW-160242. https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-160242
Alobaid, Ahmad (c. 2020). Knowledge-Graph-Based Semantic Labeling of Tabular Data (phd thesis). E.T.S. de Ingenieros Informáticos (UPM). doi:10.20868/upm.thesis.64068. https://oa.upm.es/64068/
Alobaid, Ahmad; Corcho, Oscar (2018). "Fuzzy Semantic Labeling of Semi-structured Numerical Datasets". In Faron Zucker, Catherine; Ghidini, Chiara; Napoli, Amedeo; Toussaint, Yannick (eds.). Knowledge Engineering and Knowledge Management. Lecture Notes in Computer Science. Vol. 11313. Cham: Springer International Publishing. pp. 19–33. doi:10.1007/978-3-030-03667-6_2. ISBN 978-3-030-03667-6. 978-3-030-03667-6
Pham, Minh; Alse, Suresh; Knoblock, Craig A.; Szekely, Pedro (2016). "Semantic Labeling: A Domain-Independent Approach". In Groth, Paul; Simperl, Elena; Gray, Alasdair; Sabou, Marta; Krötzsch, Markus; Lecue, Freddy; Flöck, Fabian; Gil, Yolanda (eds.). The Semantic Web – ISWC 2016. Lecture Notes in Computer Science. Vol. 9981. Cham: Springer International Publishing. pp. 446–462. doi:10.1007/978-3-319-46523-4_27. ISBN 978-3-319-46523-4. S2CID 37873758. 978-3-319-46523-4
Ramnandan, S.K.; Mittal, Amol; Knoblock, Craig A.; Szekely, Pedro (2015). "Assigning Semantic Labels to Data Sources". In Gandon, Fabien; Sabou, Marta; Sack, Harald; d’Amato, Claudia; Cudré-Mauroux, Philippe; Zimmermann, Antoine (eds.). The Semantic Web. Latest Advances and New Domains. Lecture Notes in Computer Science. Vol. 9088. Cham: Springer International Publishing. pp. 403–417. doi:10.1007/978-3-319-18818-8_25. ISBN 978-3-319-18818-8. S2CID 7040223. 978-3-319-18818-8
Zhang, Meihui; Chakrabarti, Kaushik (2013-06-22). "InfoGather+". Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. SIGMOD '13. New York, NY, USA: Association for Computing Machinery. pp. 145–156. doi:10.1145/2463676.2465276. ISBN 978-1-4503-2037-5. S2CID 15540847. 978-1-4503-2037-5
Alobaid, Ahmad (c. 2020). Knowledge-Graph-Based Semantic Labeling of Tabular Data (phd thesis). E.T.S. de Ingenieros Informáticos (UPM). doi:10.20868/upm.thesis.64068. https://oa.upm.es/64068/
Alobaid, Ahmad; Kacprzak, Emilia; Corcho, Oscar (January 1, 2021). "Typology-based semantic labeling of numeric tabular data". Semantic Web. 12 (1): 5–20. doi:10.3233/SW-200397. S2CID 224853014 – via content.iospress.com. https://content.iospress.com/articles/semantic-web/sw200397
Syed, Zareen; Finin, Tim; Mulwad, Varish; Joshi, Anupam (2010-04-26). "Exploiting a Web of Semantic Data for Interpreting Tables". Proceedings of the Second Web Science Conference. https://ebiquity.umbc.edu/paper/html/id/474
Venetis, Petros; Halevy, Alon; Madhavan, Jayant; Paşca, Marius; Shen, Warren; Wu, Fei; Miao, Gengxin; Wu, Chung (2011-06-01). "Recovering semantics of tables on the web". Proceedings of the VLDB Endowment. 4 (9): 528–538. doi:10.14778/2002938.2002939. ISSN 2150-8097. S2CID 11359711. https://doi.org/10.14778/2002938.2002939
Quercini, Gianluca; Reynaud, Chantal (2013). "Entity discovery and annotation in tables". Proceedings of the 16th International Conference on Extending Database Technology (PDF). New York, New York, USA: ACM Press. p. 693. doi:10.1145/2452376.2452457. ISBN 9781450315975. S2CID 8252126. 9781450315975
"About: capital of". dbpedia.org. Retrieved 2022-09-22. https://dbpedia.org/property/capitalOf
Venetis, Petros; Halevy, Alon; Madhavan, Jayant; Paşca, Marius; Shen, Warren; Wu, Fei; Miao, Gengxin; Wu, Chung (2011-06-01). "Recovering semantics of tables on the web". Proceedings of the VLDB Endowment. 4 (9): 528–538. doi:10.14778/2002938.2002939. ISSN 2150-8097. S2CID 11359711. https://doi.org/10.14778/2002938.2002939
Etzioni, Oren; Banko, Michele; Soderland, Stephen; Weld, Daniel S. (2008-12-01). "Open information extraction from the web". Communications of the ACM. 51 (12): 68–74. doi:10.1145/1409360.1409378. ISSN 0001-0782. S2CID 207169186. https://doi.org/10.1145/1409360.1409378
Syed, Zareen; Finin, Tim; Mulwad, Varish; Joshi, Anupam (2010-04-26). "Exploiting a Web of Semantic Data for Interpreting Tables". Proceedings of the Second Web Science Conference. https://ebiquity.umbc.edu/paper/html/id/474
Bizer, Dominique Ritze, Oliver Lehmberg, Christian. "Web Data Commons - T2Dv2". webdatacommons.org. Retrieved 2022-07-18.{{cite web}}: CS1 maint: multiple names: authors list (link) http://webdatacommons.org/webtables/goldstandardV2.html
Bizer, Dominique Ritze, Oliver Lehmberg, Christian. "Web Data Commons - T2Dv2". webdatacommons.org. Retrieved 2022-07-18.{{cite web}}: CS1 maint: multiple names: authors list (link) http://webdatacommons.org/webtables/goldstandardV2.html
"Semantic Web Challenge on Tabular Data to Knowledge Graph Matching". www.cs.ox.ac.uk. Retrieved 2022-09-30. https://www.cs.ox.ac.uk/isg/challenges/sem-tab
"JDK 5.0 Developer's Guide: Annotations". Sun Microsystems. 2007-12-18. Archived from the original on 6 March 2008. Retrieved 2008-03-05.. http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
Characterizing the Usage, Evolution and Impact of Java Annotations in Practice. "Characterizing the Usage, Evolution and Impact of Java Annotations in Practice". https://hal.inria.fr/hal-02091516/document
Zhang, D.; Islam, M.M.; Lu, G. (2012). "A review on automatic image annotation techniques". Pattern Recognition. 45 (1): 346–362. Bibcode:2012PatRe..45..346Z. doi:10.1016/j.patcog.2011.05.013. /wiki/Bibcode_(identifier)
"Medical Definition of Genome annotation". MedicineNet. Retrieved 2021-09-09. https://www.medicinenet.com/genome_annotation/definition.htm
Pelka, Obioma; Nensa, Felix; Friedrich, Christoph M. (2018-11-12). "Annotation of enhanced radiographs for medical image retrieval with deep convolutional neural networks". PLOS ONE. 13 (11): e0206229. Bibcode:2018PLoSO..1306229P. doi:10.1371/journal.pone.0206229. ISSN 1932-6203. PMC 6231616. PMID 30419028. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231616
Wyner, Adam; Peters, Wim; Katz, Daniel (2013). "A Case Study on Legal Case Annotation". In Ashley, Kevin D. (ed.). Legal Knowledge and Information Systems. Frontiers in Artificial Intelligence and Applications. Vol. 259. Amsterdam: IOS Press. pp. 165–174. doi:10.3233/978-1-61499-359-9-165. ISBN 978-1-61499-359-9. 978-1-61499-359-9
"Annotation Schemes | CAWSE" (PDF). General Annotation Conventions. 2017-02-05. Retrieved 2019-01-06. https://cawse.transcribear.com/pdf/transcription-conventions-spoken-data.pdf
"LinguisticAnnotation". annotation.exmaralda.org. http://annotation.exmaralda.org/