If one wants to extend the natural functional calculus for polynomials on the spectrum σ ( a ) {\displaystyle \sigma (a)} of an element a {\displaystyle a} of a Banach algebra A {\displaystyle {\mathcal {A}}} to a functional calculus for continuous functions C ( σ ( a ) ) {\displaystyle C(\sigma (a))} on the spectrum, it seems obvious to approximate a continuous function by polynomials according to the Stone-Weierstrass theorem, to insert the element into these polynomials and to show that this sequence of elements converges to A {\displaystyle {\mathcal {A}}} . The continuous functions on σ ( a ) ⊂ C {\displaystyle \sigma (a)\subset \mathbb {C} } are approximated by polynomials in z {\displaystyle z} and z ¯ {\displaystyle {\overline {z}}} , i.e. by polynomials of the form p ( z , z ¯ ) = ∑ k , l = 0 N c k , l z k z ¯ l ( c k , l ∈ C ) {\textstyle p(z,{\overline {z}})=\sum _{k,l=0}^{N}c_{k,l}z^{k}{\overline {z}}^{l}\;\left(c_{k,l}\in \mathbb {C} \right)} . Here, z ¯ {\displaystyle {\overline {z}}} denotes the complex conjugation, which is an involution on the complex numbers.1 To be able to insert a {\displaystyle a} in place of z {\displaystyle z} in this kind of polynomial, Banach *-algebras are considered, i.e. Banach algebras that also have an involution *, and a ∗ {\displaystyle a^{*}} is inserted in place of z ¯ {\displaystyle {\overline {z}}} . In order to obtain a homomorphism C [ z , z ¯ ] → A {\displaystyle {\mathbb {C} }[z,{\overline {z}}]\rightarrow {\mathcal {A}}} , a restriction to normal elements, i.e. elements with a ∗ a = a a ∗ {\displaystyle a^{*}a=aa^{*}} , is necessary, as the polynomial ring C [ z , z ¯ ] {\displaystyle \mathbb {C} [z,{\overline {z}}]} is commutative. If ( p n ( z , z ¯ ) ) n {\displaystyle (p_{n}(z,{\overline {z}}))_{n}} is a sequence of polynomials that converges uniformly on σ ( a ) {\displaystyle \sigma (a)} to a continuous function f {\displaystyle f} , the convergence of the sequence ( p n ( a , a ∗ ) ) n {\displaystyle (p_{n}(a,a^{*}))_{n}} in A {\displaystyle {\mathcal {A}}} to an element f ( a ) {\displaystyle f(a)} must be ensured. A detailed analysis of this convergence problem shows that it is necessary to resort to C*-algebras. These considerations lead to the so-called continuous functional calculus.
continuous functional calculus—Let a {\displaystyle a} be a normal element of the C*-algebra A {\displaystyle {\mathcal {A}}} with unit element e {\displaystyle e} and let C ( σ ( a ) ) {\displaystyle C(\sigma (a))} be the commutative C*-algebra of continuous functions on σ ( a ) {\displaystyle \sigma (a)} , the spectrum of a {\displaystyle a} . Then there exists exactly one *-homomorphism Φ a : C ( σ ( a ) ) → A {\displaystyle \Phi _{a}\colon C(\sigma (a))\rightarrow {\mathcal {A}}} with Φ a ( 1 ) = e {\displaystyle \Phi _{a}({\boldsymbol {1}})=e} for 1 ( z ) = 1 {\displaystyle {\boldsymbol {1}}(z)=1} and Φ a ( Id σ ( a ) ) = a {\displaystyle \Phi _{a}(\operatorname {Id} _{\sigma (a)})=a} for the identity.2
The mapping Φ a {\displaystyle \Phi _{a}} is called the continuous functional calculus of the normal element a {\displaystyle a} . Usually it is suggestively set f ( a ) := Φ a ( f ) {\displaystyle f(a):=\Phi _{a}(f)} .3
Due to the *-homomorphism property, the following calculation rules apply to all functions f , g ∈ C ( σ ( a ) ) {\displaystyle f,g\in C(\sigma (a))} and scalars λ , μ ∈ C {\displaystyle \lambda ,\mu \in \mathbb {C} } :4
One can therefore imagine actually inserting the normal elements into continuous functions; the obvious algebraic operations behave as expected.
The requirement for a unit element is not a significant restriction. If necessary, a unit element can be adjoined, yielding the enlarged C*-algebra A 1 {\displaystyle {\mathcal {A}}_{1}} . Then if a ∈ A {\displaystyle a\in {\mathcal {A}}} and f ∈ C ( σ ( a ) ) {\displaystyle f\in C(\sigma (a))} with f ( 0 ) = 0 {\displaystyle f(0)=0} , it follows that 0 ∈ σ ( a ) {\displaystyle 0\in \sigma (a)} and f ( a ) ∈ A ⊂ A 1 {\displaystyle f(a)\in {\mathcal {A}}\subset {\mathcal {A}}_{1}} .5
The existence and uniqueness of the continuous functional calculus are proven separately:
In functional analysis, the continuous functional calculus for a normal operator T {\displaystyle T} is often of interest, i.e. the case where A {\displaystyle {\mathcal {A}}} is the C*-algebra B ( H ) {\displaystyle {\mathcal {B}}(H)} of bounded operators on a Hilbert space H {\displaystyle H} . In the literature, the continuous functional calculus is often only proved for self-adjoint operators in this setting. In this case, the proof does not need the Gelfand representation.9
The continuous functional calculus Φ a {\displaystyle \Phi _{a}} is an isometric isomorphism into the C*-subalgebra C ∗ ( a , e ) {\displaystyle C^{*}(a,e)} generated by a {\displaystyle a} and e {\displaystyle e} , that is:10
Since a {\displaystyle a} is a normal element of A {\displaystyle {\mathcal {A}}} , the C*-subalgebra generated by a {\displaystyle a} and e {\displaystyle e} is commutative. In particular, f ( a ) {\displaystyle f(a)} is normal and all elements of a functional calculus commutate.11
The holomorphic functional calculus is extended by the continuous functional calculus in an unambiguous way.12 Therefore, for polynomials p ( z , z ¯ ) {\displaystyle p(z,{\overline {z}})} the continuous functional calculus corresponds to the natural functional calculus for polynomials: Φ a ( p ( z , z ¯ ) ) = p ( a , a ∗ ) = ∑ k , l = 0 N c k , l a k ( a ∗ ) l {\textstyle \Phi _{a}(p(z,{\overline {z}}))=p(a,a^{*})=\sum _{k,l=0}^{N}c_{k,l}a^{k}(a^{*})^{l}} for all p ( z , z ¯ ) = ∑ k , l = 0 N c k , l z k z ¯ l {\textstyle p(z,{\overline {z}})=\sum _{k,l=0}^{N}c_{k,l}z^{k}{\overline {z}}^{l}} with c k , l ∈ C {\displaystyle c_{k,l}\in \mathbb {C} } .13
For a sequence of functions f n ∈ C ( σ ( a ) ) {\displaystyle f_{n}\in C(\sigma (a))} that converges uniformly on σ ( a ) {\displaystyle \sigma (a)} to a function f ∈ C ( σ ( a ) ) {\displaystyle f\in C(\sigma (a))} , f n ( a ) {\displaystyle f_{n}(a)} converges to f ( a ) {\displaystyle f(a)} .14 For a power series f ( z ) = ∑ n = 0 ∞ c n z n {\textstyle f(z)=\sum _{n=0}^{\infty }c_{n}z^{n}} , which converges absolutely uniformly on σ ( a ) {\displaystyle \sigma (a)} , therefore f ( a ) = ∑ n = 0 ∞ c n a n {\textstyle f(a)=\sum _{n=0}^{\infty }c_{n}a^{n}} holds.15
If f ∈ C ( σ ( a ) ) {\displaystyle f\in {\mathcal {C}}(\sigma (a))} and g ∈ C ( σ ( f ( a ) ) ) {\displaystyle g\in {\mathcal {C}}(\sigma (f(a)))} , then ( g ∘ f ) ( a ) = g ( f ( a ) ) {\displaystyle (g\circ f)(a)=g(f(a))} holds for their composition.16 If a , b ∈ A N {\displaystyle a,b\in {\mathcal {A}}_{N}} are two normal elements with f ( a ) = f ( b ) {\displaystyle f(a)=f(b)} and g {\displaystyle g} is the inverse function of f {\displaystyle f} on both σ ( a ) {\displaystyle \sigma (a)} and σ ( b ) {\displaystyle \sigma (b)} , then a = b {\displaystyle a=b} , since a = ( f ∘ g ) ( a ) = f ( g ( a ) ) = f ( g ( b ) ) = ( f ∘ g ) ( b ) = b {\displaystyle a=(f\circ g)(a)=f(g(a))=f(g(b))=(f\circ g)(b)=b} .17
The spectral mapping theorem applies: σ ( f ( a ) ) = f ( σ ( a ) ) {\displaystyle \sigma (f(a))=f(\sigma (a))} for all f ∈ C ( σ ( a ) ) {\displaystyle f\in C(\sigma (a))} .18
If a b = b a {\displaystyle ab=ba} holds for b ∈ A {\displaystyle b\in {\mathcal {A}}} , then f ( a ) b = b f ( a ) {\displaystyle f(a)b=bf(a)} also holds for all f ∈ C ( σ ( a ) ) {\displaystyle f\in C(\sigma (a))} , i.e. if b {\displaystyle b} commutates with a {\displaystyle a} , then also with the corresponding elements of the continuous functional calculus f ( a ) {\displaystyle f(a)} .19
Let Ψ : A → B {\displaystyle \Psi \colon {\mathcal {A}}\rightarrow {\mathcal {B}}} be an unital *-homomorphism between C*-algebras A {\displaystyle {\mathcal {A}}} and B {\displaystyle {\mathcal {B}}} . Then Ψ {\displaystyle \Psi } commutates with the continuous functional calculus. The following holds: Ψ ( f ( a ) ) = f ( Ψ ( a ) ) {\displaystyle \Psi (f(a))=f(\Psi (a))} for all f ∈ C ( σ ( a ) ) {\displaystyle f\in C(\sigma (a))} . In particular, the continuous functional calculus commutates with the Gelfand representation.20
With the spectral mapping theorem, functions with certain properties can be directly related to certain properties of elements of C*-algebras:21
These are based on statements about the spectrum of certain elements, which are shown in the Applications section.
In the special case that A {\displaystyle {\mathcal {A}}} is the C*-algebra of bounded operators B ( H ) {\displaystyle {\mathcal {B}}(H)} for a Hilbert space H {\displaystyle H} , eigenvectors v ∈ H {\displaystyle v\in H} for the eigenvalue λ ∈ σ ( T ) {\displaystyle \lambda \in \sigma (T)} of a normal operator T ∈ B ( H ) {\displaystyle T\in {\mathcal {B}}(H)} are also eigenvectors for the eigenvalue f ( λ ) ∈ σ ( f ( T ) ) {\displaystyle f(\lambda )\in \sigma (f(T))} of the operator f ( T ) {\displaystyle f(T)} . If T v = λ v {\displaystyle Tv=\lambda v} , then f ( T ) v = f ( λ ) v {\displaystyle f(T)v=f(\lambda )v} also holds for all f ∈ σ ( T ) {\displaystyle f\in \sigma (T)} .24
The following applications are typical and very simple examples of the numerous applications of the continuous functional calculus:
Let A {\displaystyle {\mathcal {A}}} be a C*-algebra and a ∈ A N {\displaystyle a\in {\mathcal {A}}_{N}} a normal element. Then the following applies to the spectrum σ ( a ) {\displaystyle \sigma (a)} :25
Proof.26 The continuous functional calculus Φ a {\displaystyle \Phi _{a}} for the normal element a ∈ A {\displaystyle a\in {\mathcal {A}}} is a *-homomorphism with Φ a ( Id ) = a {\displaystyle \Phi _{a}(\operatorname {Id} )=a} and thus a {\displaystyle a} is self-adjoint/unitary/a projection if Id ∈ C ( σ ( a ) ) {\displaystyle \operatorname {Id} \in C(\sigma (a))} is also self-adjoint/unitary/a projection. Exactly then Id {\displaystyle \operatorname {Id} } is self-adjoint if z = Id ( z ) = Id ¯ ( z ) = z ¯ {\displaystyle z={\text{Id}}(z)={\overline {\text{Id}}}(z)={\overline {z}}} holds for all z ∈ σ ( a ) {\displaystyle z\in \sigma (a)} , i.e. if σ ( a ) {\displaystyle \sigma (a)} is real. Exactly then Id {\displaystyle {\text{Id}}} is unitary if 1 = Id ( z ) Id ¯ ( z ) = z z ¯ = | z | 2 {\displaystyle 1={\text{Id}}(z){\overline {\operatorname {Id} }}(z)=z{\overline {z}}=|z|^{2}} holds for all z ∈ σ ( a ) {\displaystyle z\in \sigma (a)} , therefore σ ( a ) ⊆ { λ ∈ C | ‖ λ ‖ = 1 } {\displaystyle \sigma (a)\subseteq \{\lambda \in \mathbb {C} \ |\ \left\|\lambda \right\|=1\}} . Exactly then Id {\displaystyle {\text{Id}}} is a projection if and only if ( Id ( z ) ) 2 = Id ( z ) = Id ( z ) ¯ {\displaystyle (\operatorname {Id} (z))^{2}=\operatorname {Id} }(z)={\overline {\operatorname {Id} (z)}} , that is z 2 = z = z ¯ {\displaystyle z^{2}=z={\overline {z}}} for all z ∈ σ ( a ) {\displaystyle z\in \sigma (a)} , i.e. σ ( a ) ⊆ { 0 , 1 } {\displaystyle \sigma (a)\subseteq \{0,1\}}
Let a {\displaystyle a} be a positive element of a C*-algebra A {\displaystyle {\mathcal {A}}} . Then for every n ∈ N {\displaystyle n\in \mathbb {N} } there exists a uniquely determined positive element b ∈ A + {\displaystyle b\in {\mathcal {A}}_{+}} with b n = a {\displaystyle b^{n}=a} , i.e. a unique n {\displaystyle n} -th root.27
Proof. For each n ∈ N {\displaystyle n\in \mathbb {N} } , the root function f n : R 0 + → R 0 + , x ↦ x n {\displaystyle f_{n}\colon \mathbb {R} _{0}^{+}\to \mathbb {R} _{0}^{+},x\mapsto {\sqrt[{n}]{x}}} is a continuous function on σ ( a ) ⊆ R 0 + {\displaystyle \sigma (a)\subseteq \mathbb {R} _{0}^{+}} . If b : = f n ( a ) {\displaystyle b\;\colon =f_{n}(a)} is defined using the continuous functional calculus, then b n = ( f n ( a ) ) n = ( f n n ) ( a ) = Id σ ( a ) ( a ) = a {\displaystyle b^{n}=(f_{n}(a))^{n}=(f_{n}^{n})(a)=\operatorname {Id} _{\sigma (a)}(a)=a} follows from the properties of the calculus. From the spectral mapping theorem follows σ ( b ) = σ ( f n ( a ) ) = f n ( σ ( a ) ) ⊆ [ 0 , ∞ ) {\displaystyle \sigma (b)=\sigma (f_{n}(a))=f_{n}(\sigma (a))\subseteq [0,\infty )} , i.e. b {\displaystyle b} is positive.28 If c ∈ A + {\displaystyle c\in {\mathcal {A}}_{+}} is another positive element with c n = a = b n {\displaystyle c^{n}=a=b^{n}} , then c = f n ( c n ) = f n ( b n ) = b {\displaystyle c=f_{n}(c^{n})=f_{n}(b^{n})=b} holds, as the root function on the positive real numbers is an inverse function to the function z ↦ z n {\displaystyle z\mapsto z^{n}} .29
If a ∈ A s a {\displaystyle a\in {\mathcal {A}}_{sa}} is a self-adjoint element, then at least for every odd n ∈ N {\displaystyle n\in \mathbb {N} } there is a uniquely determined self-adjoint element b ∈ A s a {\displaystyle b\in {\mathcal {A}}_{sa}} with b n = a {\displaystyle b^{n}=a} .30
Similarly, for a positive element a {\displaystyle a} of a C*-algebra A {\displaystyle {\mathcal {A}}} , each α ≥ 0 {\displaystyle \alpha \geq 0} defines a uniquely determined positive element Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle a^\alpha} of C ∗ ( a ) {\displaystyle C^{*}(a)} , such that a α a β = a α + β {\displaystyle a^{\alpha }a^{\beta }=a^{\alpha +\beta }} holds for all α , β ≥ 0 {\displaystyle \alpha ,\beta \geq 0} . If a {\displaystyle a} is invertible, this can also be extended to negative values of α {\displaystyle \alpha } .31
If a ∈ A {\displaystyle a\in {\mathcal {A}}} , then the element a ∗ a {\displaystyle a^{*}a} is positive, so that the absolute value can be defined by the continuous functional calculus | a | = a ∗ a {\displaystyle |a|={\sqrt {a^{*}a}}} , since it is continuous on the positive real numbers.32
Let a {\displaystyle a} be a self-adjoint element of a C*-algebra A {\displaystyle {\mathcal {A}}} , then there exist positive elements a + , a − ∈ A + {\displaystyle a_{+},a_{-}\in {\mathcal {A}}_{+}} , such that a = a + − a − {\displaystyle a=a_{+}-a_{-}} with a + a − = a − a + = 0 {\displaystyle a_{+}a_{-}=a_{-}a_{+}=0} holds. The elements a + {\displaystyle a_{+}} and a − {\displaystyle a_{-}} are also referred to as the positive and negative parts.33 In addition, | a | = a + + a − {\displaystyle |a|=a_{+}+a_{-}} holds.34
Proof. The functions f + ( z ) = max ( z , 0 ) {\displaystyle f_{+}(z)=\max(z,0)} and f − ( z ) = − min ( z , 0 ) {\displaystyle f_{-}(z)=-\min(z,0)} are continuous functions on σ ( a ) ⊆ R {\displaystyle \sigma (a)\subseteq \mathbb {R} } with Id ( z ) = z = f + ( z ) − f − ( z ) {\displaystyle \operatorname {Id} (z)=z=f_{+}(z)-f_{-}(z)} and f + ( z ) f − ( z ) = f − ( z ) f + ( z ) = 0 {\displaystyle f_{+}(z)f_{-}(z)=f_{-}(z)f_{+}(z)=0} . Put a + = f + ( a ) {\displaystyle a_{+}=f_{+}(a)} and a − = f − ( a ) {\displaystyle a_{-}=f_{-}(a)} . According to the spectral mapping theorem, a + {\displaystyle a_{+}} and a − {\displaystyle a_{-}} are positive elements for which a = Id ( a ) = ( f + − f − ) ( a ) = f + ( a ) − f − ( a ) = a + − a − {\displaystyle a=\operatorname {Id} (a)=(f_{+}-f_{-})(a)=f_{+}(a)-f_{-}(a)=a_{+}-a_{-}} and a + a − = f + ( a ) f − ( a ) = ( f + f − ) ( a ) = 0 = ( f − f + ) ( a ) = f − ( a ) f + ( a ) = a − a + {\displaystyle a_{+}a_{-}=f_{+}(a)f_{-}(a)=(f_{+}f_{-})(a)=0=(f_{-}f_{+})(a)=f_{-}(a)f_{+}(a)=a_{-}a_{+}} holds.35 Furthermore, f + ( z ) + f − ( z ) = | z | = z ∗ z = z 2 {\textstyle f_{+}(z)+f_{-}(z)=|z|={\sqrt {z^{*}z}}={\sqrt {z^{2}}}} , such that a + + a − = f + ( a ) + f − ( a ) = | a | = a ∗ a = a 2 {\textstyle a_{+}+a_{-}=f_{+}(a)+f_{-}(a)=|a|={\sqrt {a^{*}a}}={\sqrt {a^{2}}}} holds.36
If a {\displaystyle a} is a self-adjoint element of a C*-algebra A {\displaystyle {\mathcal {A}}} with unit element e {\displaystyle e} , then u = e i a {\displaystyle u=\mathrm {e} ^{\mathrm {i} a}} is unitary, where i {\displaystyle \mathrm {i} } denotes the imaginary unit. Conversely, if u ∈ A U {\displaystyle u\in {\mathcal {A}}_{U}} is an unitary element, with the restriction that the spectrum is a proper subset of the unit circle, i.e. σ ( u ) ⊊ T {\displaystyle \sigma (u)\subsetneq \mathbb {T} } , there exists a self-adjoint element a ∈ A s a {\displaystyle a\in {\mathcal {A}}_{sa}} with u = e i a {\displaystyle u=\mathrm {e} ^{\mathrm {i} a}} .37
Proof.38 It is u = f ( a ) {\displaystyle u=f(a)} with f : R → C , x ↦ e i x {\displaystyle f\colon \mathbb {R} \to \mathbb {C} ,\ x\mapsto \mathrm {e} ^{\mathrm {i} x}} , since a {\displaystyle a} is self-adjoint, it follows that σ ( a ) ⊂ R {\displaystyle \sigma (a)\subset \mathbb {R} } , i.e. f {\displaystyle f} is a function on the spectrum of a {\displaystyle a} . Since f ⋅ f ¯ = f ¯ ⋅ f = 1 {\displaystyle f\cdot {\overline {f}}={\overline {f}}\cdot f=1} , using the functional calculus u u ∗ = u ∗ u = e {\displaystyle uu^{*}=u^{*}u=e} follows, i.e. u {\displaystyle u} is unitary. Since for the other statement there is a z 0 ∈ T {\displaystyle z_{0}\in \mathbb {T} } , such that σ ( u ) ⊆ { e i z ∣ z 0 ≤ z ≤ z 0 + 2 π } {\displaystyle \sigma (u)\subseteq \{\mathrm {e} ^{\mathrm {i} z}\mid z_{0}\leq z\leq z_{0}+2\pi \}} the function f ( e i z ) = z {\displaystyle f(\mathrm {e} ^{\mathrm {i} z})=z} is a real-valued continuous function on the spectrum σ ( u ) {\displaystyle \sigma (u)} for z 0 ≤ z ≤ z 0 + 2 π {\displaystyle z_{0}\leq z\leq z_{0}+2\pi } , such that a = f ( u ) {\displaystyle a=f(u)} is a self-adjoint element that satisfies e i a = e i f ( u ) = u {\displaystyle \mathrm {e} ^{\mathrm {i} a}=\mathrm {e} ^{\mathrm {i} f(u)}=u} .
Let A {\displaystyle {\mathcal {A}}} be an unital C*-algebra and a ∈ A N {\displaystyle a\in {\mathcal {A}}_{N}} a normal element. Let the spectrum consist of n {\displaystyle n} pairwise disjoint closed subsets σ k ⊂ C {\displaystyle \sigma _{k}\subset \mathbb {C} } for all 1 ≤ k ≤ n {\displaystyle 1\leq k\leq n} , i.e. σ ( a ) = σ 1 ⊔ ⋯ ⊔ σ n {\displaystyle \sigma (a)=\sigma _{1}\sqcup \cdots \sqcup \sigma _{n}} . Then there exist projections p 1 , … , p n ∈ A {\displaystyle p_{1},\ldots ,p_{n}\in {\mathcal {A}}} that have the following properties for all 1 ≤ j , k ≤ n {\displaystyle 1\leq j,k\leq n} :39
In particular, there is a decomposition a = ∑ k = 1 n a k {\textstyle a=\sum _{k=1}^{n}a_{k}} for which σ ( a k ) = σ k {\displaystyle \sigma (a_{k})=\sigma _{k}} holds for all 1 ≤ k ≤ n {\displaystyle 1\leq k\leq n} .
Proof.40 Since all σ k {\displaystyle \sigma _{k}} are closed, the characteristic functions χ σ k {\displaystyle \chi _{\sigma _{k}}} are continuous on σ ( a ) {\displaystyle \sigma (a)} . Now let p k := χ σ k ( a ) {\displaystyle p_{k}:=\chi _{\sigma _{k}}(a)} be defined using the continuous functional. As the σ k {\displaystyle \sigma _{k}} are pairwise disjoint, χ σ j χ σ k = δ j k χ σ k {\displaystyle \chi _{\sigma _{j}}\chi _{\sigma _{k}}=\delta _{jk}\chi _{\sigma _{k}}} and ∑ k = 1 n χ σ k = χ ∪ k = 1 n σ k = χ σ ( a ) = 1 {\textstyle \sum _{k=1}^{n}\chi _{\sigma _{k}}=\chi _{\cup _{k=1}^{n}\sigma _{k}}=\chi _{\sigma (a)}={\textbf {1}}} holds and thus the p k {\displaystyle p_{k}} satisfy the claimed properties, as can be seen from the properties of the continuous functional equation. For the last statement, let a k = a p k = Id ( a ) ⋅ χ σ k ( a ) = ( Id ⋅ χ σ k ) ( a ) {\displaystyle a_{k}=ap_{k}=\operatorname {Id} (a)\cdot \chi _{\sigma _{k}}(a)=(\operatorname {Id} \cdot \chi _{\sigma _{k}})(a)} .
Dixmier 1977, p. 3. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, pp. 12–13. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Kadison & Ringrose 1983, p. 272. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Dixmier 1977, p. 5,13. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, p. 14. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, p. 11. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, p. 13. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Reed & Simon 1980, pp. 222–223. - Reed, Michael; Simon, Barry (1980). Methods of modern mathematical physics. vol. 1. Functional analysis. San Diego, CA: Academic Press. ISBN 0-12-585050-6. ↩
Dixmier 1977, pp. 5, 13. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Kaniuth 2009, p. 147. - Kaniuth, Eberhard (2009). A Course in Commutative Banach Algebras. Springer. ISBN 978-0-387-72475-1. ↩
Blackadar 2006, p. 62. - Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. ISBN 3-540-28486-9. ↩
Deitmar & Echterhoff 2014, p. 55. - Deitmar, Anton; Echterhoff, Siegfried (2014). Principles of Harmonic Analysis. Second Edition. Springer. ISBN 978-3-319-05791-0. ↩
Kadison & Ringrose 1983, p. 275. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Kadison & Ringrose 1983, p. 239. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Kadison & Ringrose 1983, p. 271. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Kaballo 2014, p. 332. - Kaballo, Winfried (2014). Aufbaukurs Funktionalanalysis und Operatortheorie (in German). Berlin/Heidelberg: Springer. ISBN 978-3-642-37794-5. ↩
Schmüdgen 2012, p. 93. - Schmüdgen, Konrad (2012). Unbounded Self-adjoint Operators on Hilbert Space. Springer. ISBN 978-94-007-4752-4. ↩
Reed & Simon 1980, p. 222. - Reed, Michael; Simon, Barry (1980). Methods of modern mathematical physics. vol. 1. Functional analysis. San Diego, CA: Academic Press. ISBN 0-12-585050-6. ↩
Kadison & Ringrose 1983, pp. 248–249. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Blackadar 2006, p. 63. - Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. ISBN 3-540-28486-9. ↩
Blackadar 2006, pp. 64–65. - Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. ISBN 3-540-28486-9. ↩
Kadison & Ringrose 1983, p. 246. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Dixmier 1977, p. 15. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Kadison & Ringrose 1983, pp. 274–275. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Kaballo 2014, p. 375. - Kaballo, Winfried (2014). Aufbaukurs Funktionalanalysis und Operatortheorie (in German). Berlin/Heidelberg: Springer. ISBN 978-3-642-37794-5. ↩