A DNA molecule with sequence 5'-GGAGAACGCGAGGCAAGGCTGGGAGAAATGTGGATCACGATT-3' acts as a deoxyribozyme that uses light to repair a thymine dimer, using serotonin as cofactor.
Because there are no known naturally occurring deoxyribozymes, most known deoxyribozyme sequences have been discovered through a high-throughput in vitro selection technique, similar to SELEX.
in vitro selection utilizes a "pool" of a large number of random DNA sequences (typically 1014–1015 unique strands) that can be screened for a specific catalytic activity. The pool is synthesized through solid phase synthesis such that each strand has two constant regions (primer binding sites for PCR amplification) flanking a random region of a certain length, typically 25–50 bases long. Thus the total number of unique strands, called the sequence space, is 4N where N denotes the number of bases in the random region. Because 425 ≈ 1015, there is no practical reason to choose random regions of less than 25 bases in length, while going above this number of bases means that the total sequence space cannot be surveyed. However, since there are likely many potential candidates for a given catalytic reaction within the sequence space, random regions of 50 and even higher have successfully yielded catalytic deoxyribozymes.
The pool is first subjected to a selection step, during which the catalytic strands are separated from the non-catalytic strands. The exact separation method will depend on the reaction being catalyzed. As an example, the separation step for ribonucleotide cleavage often utilizes affinity chromatography, in which a biological tag attached to each DNA strand is removed from any catalytically active strands via cleavage of a ribonucleotide base. This allows the catalytic strands to be separated by a column that specifically binds the tag, since the non-active strands will remain bound to the column while the active strands (which no longer possess the tag) flow through. A common set-up for this is a biotin tag with a streptavidin affinity column. Gel electrophoresis based separation can also be used in which the change in molecular weight of strands upon the cleavage reaction is enough to cause a shift in the location of the reactive strands on the gel. After the selection step, the reactive pool is amplified via polymerase chain reaction (PCR) to regenerate and amplify the reactive strands, and the process is repeated until a pool of sufficient reactivity is obtained. Multiple rounds of selection are required because some non-catalytic strands will inevitably make it through any single selection step. Usually 4–10 rounds are required for unambiguous catalytic activity, though more rounds are often necessary for more stringent catalytic conditions. After a sufficient number of rounds, the final pool is sequenced and the individual strands are tested for their catalytic activity. The dynamics of the pool can be described through mathematical modeling, which shows how oligonucleotides undergo competitive binding with the targets and how the evolutionary outcome can be improved through fine tuning of parameters.
Although RNA enzymes were discovered before DNA enzymes, the latter have some distinct advantages. DNA is more cost-effective, and DNA can be made with longer sequence length and can be made with higher purity in solid-phase synthesis. Several studies have shown the usage of DNAzymes to inhibit influenza A and B virus replication in host cells. DNAzymes have also been shown to inhibit the replication of SARS coronavirus (SARS-CoV), Respiratory syncytial virus (RSV), human rhinovirus 14 and HCV
Asthma is characterized by eosinophil-induced inflammation motivated by a type 2 helper T cell (Th2). By targeting the transcription factor, GATA3, of the Th2 pathway, with DNAzyme it may be possible to negate the inflammation. The safety and efficacy of SB010, a novel 10-23 DNAzyme was evaluated, and found to have the ability to cleave and inactivate GATA3 messenger RNA in phase IIa clinical trials. Treatment with SB010 significantly offset both late and early asthmatic responses after allergen aggravation in male patients with allergic asthma.
The transcription factor GATA-3 is also an interesting target, of the DNAzyme topical formulation SB012, for a novel therapeutic strategy in ulcerative colitis (UC). UC is an idiopathic inflammatory bowel diseases defined by chronically relapsing inflammations of the gastrointestinal tract, and characterized by a superficial, continuous mucosal inflammation, which predominantly affects the large intestine. Patients that do not effectively respond to current UC treatment strategies exhibit serious drawbacks one of which may lead to colorectal surgery, and can result in a severely compromised quality of life. Thus, patients with moderate or severe UC may significantly benefit from these new therapeutic alternatives, of which SB012 is in phase I clinical trials.
Atopic dermatitis (AD) is a chronic inflammatory skin disorder, in which patients suffer from eczema, often severe pruritus on the affected skin, as well as complications and secondary infections. AD surfaces from an upregulation of Th2-modified immune responses, therefore a novel AD approach using DNAzymes targeting GATA-3 is a plausible treatment option. The topical DNAzyme SB011 is currently in phase II clinical trials.
DNAzyme research for the treatment of cancer is also underway. The development of a 10-23 DNAzyme that can block the expression of IGF-I (Insulin-like growth factor I, a contributor to normal cell growth as well as tumorigenesis) by targeting its mRNA could be useful for blocking the secretion of IGF-I from prostate storm primary cells ultimately inhibiting prostate tumor development. Additionally, with this treatment it is expected that hepatic metastasis would also be inhibited, via the inhibition of IGF-I in the liver (the major source of serum IGF-I).
DNAzymes have found practical use in metal biosensors. A DNAzyme based biosensor for lead ion was used to detect lead ion in water in St. Paul Public Schools in Minnesota. Furthermore, DNAzymes have been used in combination of aptamers and nucleic acid bioreceptors for the development of a multiplex bioassay.
The hemin/G-Quadruplex DNAzyme consists of G-Quadruplex forming DNA that can bind the co-factor hemin (a.k.a. Fe(III)Protoporphyrin IX), forming a complex that can perform certain oxidation reaction in the presence of hydrogen peroxide. This DNAzyme can oxidize small molecules, such as dopamine and adenosine triphosphate, but can also be used for the modification of peptides and proteins by attaching small molecules.
Breaker RR (May 1997). "DNA enzymes". Nature Biotechnology. 15 (5): 427–431. doi:10.1038/nbt0597-427. PMID 9131619. S2CID 1918660. /wiki/Ronald_Breaker
Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (November 1982). "Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena". Cell. 31 (1): 147–157. doi:10.1016/0092-8674(82)90414-7. PMID 6297745. S2CID 14787080. /wiki/Doi_(identifier)
Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (December 1983). "The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme". Cell. 35 (3 Pt 2): 849–857. doi:10.1016/0092-8674(83)90117-4. PMID 6197186. S2CID 39111511. /wiki/Doi_(identifier)
Köhler T, Patsis PA, Hahn D, Ruland A, Naas C, Müller M, Thiele J (April 2020). "DNAzymes as Catalysts for l-Tyrosine and Amyloid β Oxidation". ACS Omega. 5 (13): 7059–7064. doi:10.1021/acsomega.9b02645. PMC 7143405. PMID 32280846. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143405
Breaker RR, Joyce GF (September 2014). "The expanding view of RNA and DNA function". Chemistry & Biology. 21 (9): 1059–1065. doi:10.1016/j.chembiol.2014.07.008. PMC 4171699. PMID 25237854. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171699
Silverman SK (October 2004). "Deoxyribozymes: DNA catalysts for bioorganic chemistry". Organic & Biomolecular Chemistry. 2 (19): 2701–2706. CiteSeerX 10.1.1.626.8241. doi:10.1039/B411910J. PMID 15455136. /wiki/CiteSeerX_(identifier)
Silverman SK (October 2004). "Deoxyribozymes: DNA catalysts for bioorganic chemistry". Organic & Biomolecular Chemistry. 2 (19): 2701–2706. CiteSeerX 10.1.1.626.8241. doi:10.1039/B411910J. PMID 15455136. /wiki/CiteSeerX_(identifier)
Breaker RR (May 1997). "DNA enzymes". Nature Biotechnology. 15 (5): 427–431. doi:10.1038/nbt0597-427. PMID 9131619. S2CID 1918660. /wiki/Ronald_Breaker
Breaker RR (May 1997). "DNA enzymes". Nature Biotechnology. 15 (5): 427–431. doi:10.1038/nbt0597-427. PMID 9131619. S2CID 1918660. /wiki/Ronald_Breaker
Ponce-Salvatierra A, Boccaletto P, Bujnicki JM (January 2021). "DNAmoreDB, a database of DNAzymes". Nucleic Acids Research. 49 (D1): D76 – D81. doi:10.1093/nar/gkaa867. PMC 7778931. PMID 33053178. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778931
Silverman SK (October 2004). "Deoxyribozymes: DNA catalysts for bioorganic chemistry". Organic & Biomolecular Chemistry. 2 (19): 2701–2706. CiteSeerX 10.1.1.626.8241. doi:10.1039/B411910J. PMID 15455136. /wiki/CiteSeerX_(identifier)
Silverman SK (2005). "In vitro selection, characterization, and application of deoxyribozymes that cleave RNA". Nucleic Acids Research. 33 (19): 6151–6163. doi:10.1093/nar/gki930. PMC 1283523. PMID 16286368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283523
Breaker RR, Joyce GF (December 1994). "A DNA enzyme that cleaves RNA". Chemistry & Biology. 1 (4): 223–229. doi:10.1016/1074-5521(94)90014-0. PMID 9383394. /wiki/Doi_(identifier)
Lan T, Furuya K, Lu Y (June 2010). "A highly selective lead sensor based on a classic lead DNAzyme". Chemical Communications. 46 (22): 3896–3898. doi:10.1039/B926910J. PMC 3071848. PMID 20407665. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071848
Breaker RR, Joyce GF (December 1994). "A DNA enzyme that cleaves RNA". Chemistry & Biology. 1 (4): 223–229. doi:10.1016/1074-5521(94)90014-0. PMID 9383394. /wiki/Doi_(identifier)
Breaker RR, Joyce GF (October 1995). "A DNA enzyme with Mg(2+)-dependent RNA phosphoesterase activity". Chemistry & Biology. 2 (10): 655–660. doi:10.1016/1074-5521(95)90028-4. hdl:2060/19980216755. PMID 9383471. S2CID 8546430. /wiki/Doi_(identifier)
Faulhammer D, Famulok M (1996-12-01). "The Ca2+ Ion as a Cofactor for a Novel RNA-Cleaving Deoxyribozyme". Angewandte Chemie International Edition in English. 35 (23–24): 2837–2841. doi:10.1002/anie.199628371. ISSN 1521-3773. /wiki/Doi_(identifier)
Santoro SW, Joyce GF (April 1997). "A general purpose RNA-cleaving DNA enzyme". Proceedings of the National Academy of Sciences of the United States of America. 94 (9): 4262–4266. Bibcode:1997PNAS...94.4262S. doi:10.1073/pnas.94.9.4262. PMC 20710. PMID 9113977. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC20710
Silverman SK (2005). "In vitro selection, characterization, and application of deoxyribozymes that cleave RNA". Nucleic Acids Research. 33 (19): 6151–6163. doi:10.1093/nar/gki930. PMC 1283523. PMID 16286368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283523
Cruz RP, Withers JB, Li Y (January 2004). "Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme". Chemistry & Biology. 11 (1): 57–67. doi:10.1016/j.chembiol.2003.12.012. hdl:11375/23673. PMID 15112995. https://doi.org/10.1016%2Fj.chembiol.2003.12.012
Fokina AA, Meschaninova MI, Durfort T, Venyaminova AG, François JC (March 2012). "Targeting insulin-like growth factor I with 10-23 DNAzymes: 2'-O-methyl modifications in the catalytic core enhance mRNA cleavage". Biochemistry. 51 (11): 2181–2191. doi:10.1021/bi201532q. PMID 22352843. /wiki/Doi_(identifier)
Montserrat Pagès A, Hertog M, Nicolaï B, Spasic D, Lammertyn J (2023-09-05). "Unraveling the Kinetics of the 10-23 RNA-Cleaving DNAzyme". International Journal of Molecular Sciences. 24 (18): 13686. doi:10.3390/ijms241813686. ISSN 1422-0067. PMC 10531344. PMID 37761982. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531344
Li J, Lu Y (2000-10-01). "A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions". Journal of the American Chemical Society. 122 (42): 10466–10467. doi:10.1021/ja0021316. ISSN 0002-7863. /wiki/Doi_(identifier)
Wu P, Hwang K, Lan T, Lu Y (April 2013). "A DNAzyme-gold nanoparticle probe for uranyl ion in living cells". Journal of the American Chemical Society. 135 (14): 5254–5257. doi:10.1021/ja400150v. PMC 3644223. PMID 23531046. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644223
Torabi SF, Wu P, McGhee CE, Chen L, Hwang K, Zheng N, et al. (May 2015). "In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing". Proceedings of the National Academy of Sciences of the United States of America. 112 (19): 5903–5908. Bibcode:2015PNAS..112.5903T. doi:10.1073/pnas.1420361112. PMC 4434688. PMID 25918425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434688
Ponce-Salvatierra A, Wawrzyniak-Turek K, Steuerwald U, Höbartner C, Pena V (January 2016). "Crystal structure of a DNA catalyst". Nature. 529 (7585): 231–234. Bibcode:2016Natur.529..231P. doi:10.1038/nature16471. PMID 26735012. S2CID 4461523. https://resolver.sub.uni-goettingen.de/purl?gs-1/14049
Borman S. "After Two Decades Of Trying, Scientists Report First Crystal Structure Of A DNAzyme | January 11, 2016 Issue - Vol. 94 Issue 2 | Chemical & Engineering News". cen.acs.org. Retrieved 2017-02-04. http://cen.acs.org/articles/94/i2/Two-Decades-Trying-Scientists-Report.html
Ven K, Safdar S, Dillen A, Lammertyn J, Spasic D (January 2019). "Re-engineering 10-23 core DNA- and MNAzymes for applications at standard room temperature". Analytical and Bioanalytical Chemistry. 411 (1): 205–215. doi:10.1007/s00216-018-1429-4. PMID 30341659. S2CID 53010843. https://lirias.kuleuven.be/handle/123456789/628542
Chinnapen DJ, Sen D (January 2004). "A deoxyribozyme that harnesses light to repair thymine dimers in DNA". Proceedings of the National Academy of Sciences of the United States of America. 101 (1): 65–69. Bibcode:2004PNAS..101...65C. doi:10.1073/pnas.0305943101. PMC 314139. PMID 14691255. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC314139
Silverman SK (October 2004). "Deoxyribozymes: DNA catalysts for bioorganic chemistry". Organic & Biomolecular Chemistry. 2 (19): 2701–2706. CiteSeerX 10.1.1.626.8241. doi:10.1039/B411910J. PMID 15455136. /wiki/CiteSeerX_(identifier)
Chinnapen DJ, Sen D (January 2004). "A deoxyribozyme that harnesses light to repair thymine dimers in DNA". Proceedings of the National Academy of Sciences of the United States of America. 101 (1): 65–69. Bibcode:2004PNAS..101...65C. doi:10.1073/pnas.0305943101. PMC 314139. PMID 14691255. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC314139
Joyce GF (2004). "Directed evolution of nucleic acid enzymes". Annual Review of Biochemistry. 73 (1): 791–836. doi:10.1146/annurev.biochem.73.011303.073717. PMID 15189159. /wiki/Doi_(identifier)
Silverman SK (August 2008). "Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects". Chemical Communications (30): 3467–3485. doi:10.1039/B807292M. PMID 18654692. S2CID 9824687. /wiki/Doi_(identifier)
Silverman SK (August 2008). "Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects". Chemical Communications (30): 3467–3485. doi:10.1039/B807292M. PMID 18654692. S2CID 9824687. /wiki/Doi_(identifier)
Joyce GF (2004). "Directed evolution of nucleic acid enzymes". Annual Review of Biochemistry. 73 (1): 791–836. doi:10.1146/annurev.biochem.73.011303.073717. PMID 15189159. /wiki/Doi_(identifier)
Silverman SK (August 2008). "Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects". Chemical Communications (30): 3467–3485. doi:10.1039/B807292M. PMID 18654692. S2CID 9824687. /wiki/Doi_(identifier)
Silverman SK (August 2008). "Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects". Chemical Communications (30): 3467–3485. doi:10.1039/B807292M. PMID 18654692. S2CID 9824687. /wiki/Doi_(identifier)
Silverman SK (2005). "In vitro selection, characterization, and application of deoxyribozymes that cleave RNA". Nucleic Acids Research. 33 (19): 6151–6163. doi:10.1093/nar/gki930. PMC 1283523. PMID 16286368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283523
Silverman SK (August 2008). "Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects". Chemical Communications (30): 3467–3485. doi:10.1039/B807292M. PMID 18654692. S2CID 9824687. /wiki/Doi_(identifier)
Spill F, Weinstein ZB, Irani Shemirani A, Ho N, Desai D, Zaman MH (October 2016). "Controlling uncertainty in aptamer selection". Proceedings of the National Academy of Sciences of the United States of America. 113 (43): 12076–12081. arXiv:1612.08995. Bibcode:2016PNAS..11312076S. doi:10.1073/pnas.1605086113. PMC 5087011. PMID 27790993. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087011
Joyce GF (2004). "Directed evolution of nucleic acid enzymes". Annual Review of Biochemistry. 73 (1): 791–836. doi:10.1146/annurev.biochem.73.011303.073717. PMID 15189159. /wiki/Doi_(identifier)
Silverman SK (August 2008). "Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects". Chemical Communications (30): 3467–3485. doi:10.1039/B807292M. PMID 18654692. S2CID 9824687. /wiki/Doi_(identifier)
Silverman SK (August 2008). "Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects". Chemical Communications (30): 3467–3485. doi:10.1039/B807292M. PMID 18654692. S2CID 9824687. /wiki/Doi_(identifier)
Gysbers R, Tram K, Gu J, Li Y (June 2015). "Evolution of an Enzyme from a Noncatalytic Nucleic Acid Sequence". Scientific Reports. 5: 11405. Bibcode:2015NatSR...511405G. doi:10.1038/srep11405. PMC 4473686. PMID 26091540. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473686
Paul N, Springsteen G, Joyce GF (March 2006). "Conversion of a ribozyme to a deoxyribozyme through in vitro evolution". Chemistry & Biology. 13 (3): 329–338. doi:10.1016/j.chembiol.2006.01.007. PMID 16638538. https://doi.org/10.1016%2Fj.chembiol.2006.01.007
Kumar B, Asha K, Chauhan SP (2013-10-07). "DNAzyme Mediated Post-transcriptional Gene Silencing: A Novel Therapeutic Approach". https://www.webmedcentral.com/article_view/4415
Kumar B, Khanna M, Kumar P, Sood V, Vyas R, Banerjea AC (May 2012). "Nucleic acid-mediated cleavage of M1 gene of influenza A virus is significantly augmented by antisense molecules targeted to hybridize close to the cleavage site". Molecular Biotechnology. 51 (1): 27–36. doi:10.1007/s12033-011-9437-z. PMID 21744034. S2CID 45686564. /wiki/Doi_(identifier)
Kumar B, Rajput R, Pati DR, Khanna M (September 2015). "Potent Intracellular Knock-Down of Influenza A Virus M2 Gene Transcript by DNAzymes Considerably Reduces Viral Replication in Host Cells". Molecular Biotechnology. 57 (9): 836–845. doi:10.1007/s12033-015-9876-z. PMID 26021603. S2CID 23234776. /wiki/Doi_(identifier)
Kumar B, Kumar P, Rajput R, Saxena L, Daga MK, Khanna M (October 2013). "Sequence-specific cleavage of BM2 gene transcript of influenza B virus by 10-23 catalytic motif containing DNA enzymes significantly inhibits viral RNA translation and replication". Nucleic Acid Therapeutics. 23 (5): 355–362. doi:10.1089/nat.2013.0432. PMID 23971908. /wiki/Doi_(identifier)
Zhang Z, Zhang S, Wang S (February 2017). "DNAzymes Dz13 target the c-jun possess antiviral activity against influenza A viruses". Microbial Pathogenesis. 103: 155–161. doi:10.1016/j.micpath.2016.12.024. PMID 28039102. /wiki/Doi_(identifier)
Kumar B, Asha K, Khanna M, Ronsard L, Meseko CA, Sanicas M (April 2018). "The emerging influenza virus threat: status and new prospects for its therapy and control". Archives of Virology. 163 (4): 831–844. doi:10.1007/s00705-018-3708-y. PMC 7087104. PMID 29322273. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087104
Asha K, Kumar P, Sanicas M, Meseko CA, Khanna M, Kumar B (December 2018). "Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections". Journal of Clinical Medicine. 8 (1): 6. doi:10.3390/jcm8010006. PMC 6351902. PMID 30577479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351902
Asha K, Kumar P, Sanicas M, Meseko CA, Khanna M, Kumar B (December 2018). "Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections". Journal of Clinical Medicine. 8 (1): 6. doi:10.3390/jcm8010006. PMC 6351902. PMID 30577479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351902
Asha K, Kumar P, Sanicas M, Meseko CA, Khanna M, Kumar B (December 2018). "Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections". Journal of Clinical Medicine. 8 (1): 6. doi:10.3390/jcm8010006. PMC 6351902. PMID 30577479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351902
Schubert S, Gül DC, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J (October 2003). "RNA cleaving '10-23' DNAzymes with enhanced stability and activity". Nucleic Acids Research. 31 (20): 5982–5992. doi:10.1093/nar/gkg791. PMC 219472. PMID 14530446. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC219472
Roy S, Gupta N, Subramanian N, Mondal T, Banerjea AC, Das S (July 2008). "Sequence-specific cleavage of hepatitis C virus RNA by DNAzymes: inhibition of viral RNA translation and replication". The Journal of General Virology. 89 (Pt 7): 1579–1586. doi:10.1099/vir.0.83650-0. PMID 18559927. https://doi.org/10.1099%2Fvir.0.83650-0
Krug N, Hohlfeld JM, Kirsten AM, Kornmann O, Beeh KM, Kappeler D, et al. (May 2015). "Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme". The New England Journal of Medicine. 372 (21): 1987–1995. doi:10.1056/nejmoa1411776. hdl:1854/LU-6862585. PMID 25981191. /wiki/Doi_(identifier)
"Efficacy, Pharmacokinetics, Tolerability, Safety of SB012 Intrarectally Applied in Active Ulcerative Colitis Patients (SECURE)". ClinicalTrials.gov. Retrieved May 27, 2016. https://clinicaltrials.gov/ct2/show/record/NCT02129439?term=DNAzyme&rank=7
"Efficacy, Safety, Tolerability, Pharmacokinetics and Pharmacodynamics Study of the Topical Formulation SB011 Applied to Lesional Skin in Patients With Atopic Eczema". ClinicalTrail.gov. Retrieved May 27, 2016. https://clinicaltrials.gov/ct2/show/study/NCT02079688?term=DNAzyme&rank=5
Fokina AA, Meschaninova MI, Durfort T, Venyaminova AG, François JC (March 2012). "Targeting insulin-like growth factor I with 10-23 DNAzymes: 2'-O-methyl modifications in the catalytic core enhance mRNA cleavage". Biochemistry. 51 (11): 2181–2191. doi:10.1021/bi201532q. PMID 22352843. /wiki/Doi_(identifier)
Liu J, Lu Y (2004). "Optimization of a Pb2+-Directed Gold Nanoparticle/DNAzyme Assembly and Its Application as a Colorimetric Biosensor for Pb2+". Chem. Mater. 16 (17): 3231–38. doi:10.1021/cm049453j. /wiki/Doi_(identifier)
Wei H, Li B, Li J, Dong S, Wang E (March 2008). "DNAzyme-based colorimetric sensing of lead (Pb(2+)) using unmodified gold nanoparticle probes". Nanotechnology. 19 (9): 095501. Bibcode:2008Nanot..19i5501W. doi:10.1088/0957-4484/19/9/095501. PMID 21817668. S2CID 5201672. /wiki/Bibcode_(identifier)
"Lead in Water: St. Paul Schools Delayed Fixes". ABC 6 NEWS. Archived from the original on 2021-12-08. Retrieved 2017-02-04. https://web.archive.org/web/20211208213003/https://www.kaaltv.com/article/stories/S4265242.shtml
Montserrat Pagès A, Safdar S, Ven K, Lammertyn J, Spasic D (August 2021). "DNA-only bioassay for simultaneous detection of proteins and nucleic acids". Analytical and Bioanalytical Chemistry. 413 (20): 4925–4937. doi:10.1007/s00216-021-03458-6. PMC 8238030. PMID 34184101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238030
Roelfes G, Feringa BL (May 2005). "DNA-based asymmetric catalysis" (PDF). Angewandte Chemie. 44 (21): 3230–3232. doi:10.1002/anie.200500298. PMID 15844122. S2CID 2317268. https://pure.rug.nl/ws/files/6747242/2010ChemSocRevBoersma.pdf
Travascio P, Li Y, Sen D (September 1998). "DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex". Chemistry & Biology. 5 (9): 505–517. doi:10.1016/s1074-5521(98)90006-0. PMID 9751647. https://doi.org/10.1016%2Fs1074-5521%2898%2990006-0
Golub E, Albada HB, Liao WC, Biniuri Y, Willner I (January 2016). "Nucleoapzymes: Hemin/G-Quadruplex DNAzyme-Aptamer Binding Site Conjugates with Superior Enzyme-like Catalytic Functions". Journal of the American Chemical Society. 138 (1): 164–172. doi:10.1021/jacs.5b09457. PMID 26652164. /wiki/Doi_(identifier)
Wintermans S, Keijzer JF, Dros M, Zuilhof H, Albada B (2021-09-08). "Aptamer-Assisted Bioconjugation of Tyrosine Derivatives with hemin/G-quadruplex (hGQ) DNAzyme Nucleoapzyme Nanostructures". ChemCatChem. 13 (21): 4618–4624. doi:10.1002/cctc.202101070. hdl:1887/3238907. ISSN 1867-3880. S2CID 238732951. /wiki/Doi_(identifier)
Keijzer JF, Albada B (October 2020). "Site-Specific and Trigger-Activated Modification of Proteins by Means of Catalytic Hemin/G-quadruplex DNAzyme Nanostructures". Bioconjugate Chemistry. 31 (10): 2283–2287. doi:10.1021/acs.bioconjchem.0c00422. PMC 7581286. PMID 32909740. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581286
Xu L, Liu S, Yang T, Shen Y, Zhang Y, Huang L, et al. (2019). "DNAzyme Catalyzed Tyramide Depositing Reaction for In Situ Imaging of Protein Status on the Cell Surface". Theranostics. 9 (7): 1993–2002. doi:10.7150/thno.31943. PMC 6485291. PMID 31037152. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485291
García-Fernández A, Roelfez G (2012). "Chapter 9. Enantioselective catalysis at the DNA Scaffold". In Sigel A, Sigel H, Sigel RK (eds.). Interplay between Metal Ions and Nucleic Acids. Metal Ions in Life Sciences. Vol. 10. Springer. pp. 249–268. doi:10.1007/978-94-007-2172-2_9. ISBN 978-94-007-2171-5. PMID 22210342. 978-94-007-2171-5
Ito Y, Fukusaki E (2004). "DNA as a 'Nanomaterial'" (PDF). Journal of Molecular Catalysis B: Enzymatic. 28 (4–6): 155–166. doi:10.1016/j.molcatb.2004.01.016. Archived from the original (PDF) on 2005-10-28. https://web.archive.org/web/20051028154557/http://www.ou.dk/Nat/Chem/educ/COURSES_INFO/KE80/2004-JMolCat-DNA-Nanomaterial.pdf