A tensor A that is antisymmetric on indices i {\displaystyle i} and j {\displaystyle j} has the property that the contraction with a tensor B that is symmetric on indices i {\displaystyle i} and j {\displaystyle j} is identically 0.
For a general tensor U with components U i j k … {\displaystyle U_{ijk\dots }} and a pair of indices i {\displaystyle i} and j , {\displaystyle j,} U has symmetric and antisymmetric parts defined as:
Similar definitions can be given for other pairs of indices. As the term "part" suggests, a tensor is the sum of its symmetric part and antisymmetric part for a given pair of indices, as in U i j k … = U ( i j ) k … + U [ i j ] k … . {\displaystyle U_{ijk\dots }=U_{(ij)k\dots }+U_{[ij]k\dots }.}
A shorthand notation for anti-symmetrization is denoted by a pair of square brackets. For example, in arbitrary dimensions, for an order 2 covariant tensor M, M [ a b ] = 1 2 ! ( M a b − M b a ) , {\displaystyle M_{[ab]}={\frac {1}{2!}}(M_{ab}-M_{ba}),} and for an order 3 covariant tensor T, T [ a b c ] = 1 3 ! ( T a b c − T a c b + T b c a − T b a c + T c a b − T c b a ) . {\displaystyle T_{[abc]}={\frac {1}{3!}}(T_{abc}-T_{acb}+T_{bca}-T_{bac}+T_{cab}-T_{cba}).}
In any 2 and 3 dimensions, these can be written as M [ a b ] = 1 2 ! δ a b c d M c d , T [ a b c ] = 1 3 ! δ a b c d e f T d e f . {\displaystyle {\begin{aligned}M_{[ab]}&={\frac {1}{2!}}\,\delta _{ab}^{cd}M_{cd},\\[2pt]T_{[abc]}&={\frac {1}{3!}}\,\delta _{abc}^{def}T_{def}.\end{aligned}}} where δ a b … c d … {\displaystyle \delta _{ab\dots }^{cd\dots }} is the generalized Kronecker delta, and the Einstein summation convention is in use.
More generally, irrespective of the number of dimensions, antisymmetrization over p {\displaystyle p} indices may be expressed as T [ a 1 … a p ] = 1 p ! δ a 1 … a p b 1 … b p T b 1 … b p . {\displaystyle T_{[a_{1}\dots a_{p}]}={\frac {1}{p!}}\delta _{a_{1}\dots a_{p}}^{b_{1}\dots b_{p}}T_{b_{1}\dots b_{p}}.}
In general, every tensor of rank 2 can be decomposed into a symmetric and anti-symmetric pair as: T i j = 1 2 ( T i j + T j i ) + 1 2 ( T i j − T j i ) . {\displaystyle T_{ij}={\frac {1}{2}}(T_{ij}+T_{ji})+{\frac {1}{2}}(T_{ij}-T_{ji}).}
This decomposition is not in general true for tensors of rank 3 or more, which have more complex symmetries.
Totally antisymmetric tensors include:
K.F. Riley; M.P. Hobson; S.J. Bence (2010). Mathematical methods for physics and engineering. Cambridge University Press. ISBN 978-0-521-86153-3. 978-0-521-86153-3 ↩
Juan Ramón Ruíz-Tolosa; Enrique Castillo (2005). From Vectors to Tensors. Springer. p. 225. ISBN 978-3-540-22887-5. section §7. 978-3-540-22887-5 ↩